Background And Aims: We aimed to examine, for the first time, the effect of cannabidiol (CBD) and palmitoylethanolamide (PEA) on the permeability of the human gastrointestinal tract in vitro, ex vivo, and in vivo.

Methods: Flux measurements of fluorescein-labeled dextrans 10 (FD10) and fluorescein-labeled dextrans 4 (FD4) dextran across Caco-2 cultures treated for 24 hours with interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα) (10 ng·mL-1) were measured, with or without the presence of CBD and PEA. Mechanisms were investigated using cannabinoid receptor 1 (CB1), cannabinoid receptor 2 (CB2), transient receptor potential vanilloid 1 (TRPV1), and proliferator activated receptors (PPAR) antagonists and protein kinase A (PKA), nitric oxide synthase, phosphoinositide 3-kinases, extracellular signal-regulated kinases (MEK/ERK), adenylyl cyclase, and protein kinase C (PKC) inhibitors. Human colonic mucosal samples collected from bowel resections were treated as previously stated. The receptors TRPV1, PPARα, PPARδ, PPARγ, CB1, CB2, G-coupled protein receptor 55 (GPR55), G-coupled protein receptor 119 (GPR119), and claudins-1, -2, -3, -4, -5, -7, and -8 mRNA were measured using multiplex. Aquaporin 3 and 4 were measured using enzyme-linked immunosorbent assay (ELISA). A randomized, double-blind, controlled-trial assessed the effect of PEA or CBD on the absorption of lactulose and mannitol in humans taking 600 mg of aspirin. Urinary concentrations of these sugars were measured using liquid chromatography mass spectrometry.

Results: In vitro, PEA, and CBD decreased the inflammation-induced flux of dextrans (P < 0.0001), sensitive to PPARα and CB1 antagonism, respectively. Both PEA and CBD were prevented by PKA, MEK/ERK, and adenylyl cyclase inhibition (P < 0.001). In human mucosa, inflammation decreased claudin-5 mRNA, which was prevented by CBD (P < 0.05). Palmitoylethanolamide and cannabidiol prevented an inflammation-induced fall in TRPV1 and increase in PPARα transcription (P < 0.0001). In vivo, aspirin caused an increase in the absorption of lactulose and mannitol, which were reduced by PEA or CBD (P < 0.001).

Conclusion: Cannabidiol and palmitoylethanolamide reduce permeability in the human colon. These findings have implications in disorders associated with increased gut permeability, such as inflammatory bowel disease.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ibd/izz017DOI Listing

Publication Analysis

Top Keywords

pea cbd
16
palmitoylethanolamide cannabidiol
8
permeability human
8
fluorescein-labeled dextrans
8
cannabinoid receptor
8
protein kinase
8
mek/erk adenylyl
8
adenylyl cyclase
8
g-coupled protein
8
protein receptor
8

Similar Publications

Background: The mental health benefits of cannabidiol (CBD) are promising but can be inconsistent, in part due to challenges in defining an individual's effective dosage. In schizophrenia, alterations in anandamide (AEA) concentrations, an endocannabinoid (eCB) agonist of the eCB system, reflect positively on treatment with CBD. Here, we expanded this assessment to include eCBs alongside AEA congeners, comparing phytocannabinoids and dosage in a clinical setting.

View Article and Find Full Text PDF

Cannabinoids and Sleep: Exploring Biological Mechanisms and Therapeutic Potentials.

Int J Mol Sci

March 2024

Psychiatry Unit, Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy.

The endogenous cannabinoid system (ECS) plays a critical role in the regulation of various physiological functions, including sleep, mood, and neuroinflammation. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinomimimetics, and some N-acylethanolamides, particularly palmitoyethanolamide, have emerged as potential therapeutic agents for the management of sleep disorders. THC, the psychoactive component of cannabis, may initially promote sleep, but, in the long term, alters sleep architecture, while CBD shows promise in improving sleep quality without psychoactive effects.

View Article and Find Full Text PDF

The Effect of Oil-Based Cannabis Extracts on Metabolic Parameters and Microbiota Composition of Mice Fed a Standard and a High-Fat Diet.

Int J Mol Sci

January 2024

The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190401, Israel.

The prevalence of obesity and obesity-related pathologies is lower in frequent cannabis users compared to non-users. It is well established that the endocannabinoid system has an important role in the development of obesity. We recently demonstrated that prolonged oral consumption of purified Δ-9 Tetrahydrocannabinol (THC), but not of cannabidiol (CBD), ameliorates diet-induced obesity and improves obesity-related metabolic complications in a high-fat diet mouse model.

View Article and Find Full Text PDF

Background: There is a need for biomarkers to support an accurate diagnosis of Parkinson's disease (PD). Cerebrospinal fluid (CSF) has been a successful biofluid for finding neurodegenerative biomarkers, and modern highly sensitive multiplexing methods offer the possibility to perform discovery studies. Using a large-scale multiplex proximity extension assay (PEA) approach, we aimed to discover novel diagnostic protein biomarkers allowing accurate discrimination of PD from both controls and atypical Parkinsonian disorders (APD).

View Article and Find Full Text PDF

Background: Adolescents and young adults may use cannabidiol (CBD) products in an attempt to reduce depression and anxiety symptoms, despite little research examining this use. This systematic review evaluated preclinical and clinical research on the effects of CBD on depressive and anxiety disorders in adolescence and young adulthood. To provide context, we discuss CBD's mechanism of action and neurodevelopmental effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!