Accumulating evidence suggests that noncoding RNAs play a vital role in cancer biology. Circular RNAs (circRNAs), a newly defined class of endogenously widespread noncoding RNAs, have been intensively reported to influence cell function and development, and even cancer prognosis by sponging microRNAs in various types of cancer. Nevertheless, the circRNAs research in hepatocellular carcinoma (HCC) still remains far insufficient. Herein, we investigated the role of a newly defined circRNAs, circ_0005075, in HCC development. We found circ_0005075 was upregulated in HCC tissues. HCC progression was suppressed by downregulation of circ_0005075 in vitro and in vivo, and the suppression was partially reversed by inhibition of microRNA-335 (miR-335) expression. Further, we found the expression of mitogen-activated protein kinase 1 (MAPK1) was substantially regulated by circ_0005075 and miR-335. Mechanically, it was demonstrated that circ_0005075 could directly bind to miR-335 and miR-335 could bind to MAPK1. Our data provide evidence that circ_0005705 promotes the HCC progression by sponging miR-335 and further regulating MAPK1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.28757DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
8
noncoding rnas
8
newly defined
8
hcc progression
8
circ_0005075
6
hcc
5
mir-335
5
circ_0005075 promotes
4
promotes hepatocellular
4
carcinoma progression
4

Similar Publications

Background: Large hepatocellular carcinoma (HCC) is difficult to resect and accompanied by poor outcome. The aim was to evaluate the short-term and long-term outcomes of patients who underwent liver resection for large HCC, eventually drawing prediction models for short-term and long-term outcomes.

Methods: 1710 large HCC patients were recruited and randomly divided into the training (n = 1140) and validation (n = 570) cohorts in a 2:1 ratio.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a prevalent cancer that significantly contributes to mortality globally, primarily due to its late diagnosis. Early detection is crucial yet challenging. This study leverages the potential of deep learning (DL) technologies, employing the You Only Look Once (YOLO) architecture, to enhance the detection of HCC in computed tomography (CT) images, aiming to improve early diagnosis and thereby patient outcomes.

View Article and Find Full Text PDF

Studies investigating the impact of donor cytomegalovirus (CMV) positivity on the prognosis of liver transplantation (LT) recipients with HCC are currently lacking. A total of 21 759 eligible LT recipients were identified in the UNOS database between January 2002 and June 2023. The patients were divided into the donor CMV-seronegative (n = 7575) and CMV-seropositive (n = 14 814) groups.

View Article and Find Full Text PDF

Construction and evaluation of a prognostic model of autophagy-related genes in hepatocellular carcinoma.

Biochem Biophys Rep

March 2025

Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China.

Background: Hepatocellular carcinoma (HCC) is a globally prevalent disease. Our article evaluates risk models based on autophagy- and HCC-related genes and their prognostic value by bioinformatics analytical methods to provide a scientific basis for clinical treatment.

Methods: Prognostic genes were identified by univariate and multivariate Cox analyses, and risk scores were calculated.

View Article and Find Full Text PDF

Aims: Liver fibrosis predisposes patients to liver failure and hepatocellular carcinoma. Various markers, which can be calculated easily from serum parameters, have been reported to predict liver fibrosis accurately. This study investigated the prognostic factors, including blood-based markers for liver fibrosis of patients with hepatocellular carcinoma following initial curative hepatectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!