Bacteriophage therapy was an ascendant technology for combating bacterial infections before the golden age of antibiotics, but the therapeutic potential of phages was largely ignored after the discovery of penicillin. Recently, with antibiotic-resistant infections on the rise, these phages are receiving renewed attention to combat problematic bacterial infections. Our approach is to enhance bacteriophages with antimicrobial peptides, short peptides with broad-spectrum antibiotic or antibiofilm effects. We inserted coding sequences for 1018, an antimicrobial peptide previously shown to be an effective broad-spectrum antimicrobial and antibiofilm agent, or the fluorescent marker mCherry, into the T7Select phage genome. Transcription and production of 1018 or mCherry began rapidly alter E. coli cultures were infected with genetically modified phages. mCherry fluorescence, which requires a 90 min initial maturation period, was observed in infected cultures after 2 h of infection. Finally, we tested phages expressing 1018 (1018 T7) against bacterial planktonic cultures and biofilms, and found the 1018 T7 phage was more effective than the unmodified T7Select phage at both killing planktonic cells and eradicating established biofilms, validating our phage-driven antimicrobial peptide expression system. The combination of narrow-spectrum phages delivering relatively high local doses of broad-spectrum antimicrobials could be a powerful method to combat resistant infections. The experiments we describe prove this combination is feasible in vitro, but further testing and optimization are required before genetically modified phages are ready for use in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-019-8686-6 | DOI Listing |
Blood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFPLoS One
January 2025
Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Zoology and Environment Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka.
Background: Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease.
View Article and Find Full Text PDFBiosci Rep
January 2025
Scotland's Rural College Animal and Veterinary Sciences Research Group, Edinburgh, United Kingdom.
Approximately one in every 800 children is born with the severe aneuploid condition of Down Syndrome, a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype and therefore therapeutic interventions are limited.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!