A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Trophic strategy of diverse methanogens across a river-to-sea gradient. | LitMetric

Trophic strategy of diverse methanogens across a river-to-sea gradient.

J Microbiol

Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, P. R. China.

Published: June 2019

Methanogens are an important biogenic source of methane, especially in estuarine waters across a river-to-sea gradient. However, the diversity and trophic strategy of methanogens in this gradient are not clear. In this study, the diversity and trophic strategy of methanogens in sediments across the Yellow River (YR) to the Bohai Sea (BS) gradient were investigated by high-throughput sequencing based on the 16S rRNA gene. The results showed that the diversity of methanogens in sediments varied from multitrophic communities in YR samples to specific methylotrophic communities in BS samples. The methanogenic community in YR samples was dominated by Methanosarcina, while that of BS samples was dominated by methylotrophic Methanococcoides. The distinct methanogens suggested that the methanogenic community of BS sediments did not originate from YR sediment input. High-throughput sequencing of the mcrA gene revealed that active Methanococcoides dominated in the BS enrichment cultures with trimethylamine as the substrate, and methylotrophic Methanolobus dominated in the YR enrichment cultures, as detected to a limited amount in in situ sediment samples. Methanosarcina were also detected in this gradient sample. Furthermore, the same species of Methanosarcina mazei, which was widely distributed, was isolated from the area across a river-to-sea gradient by the culture-dependent method. In summary, our results showed that a distribution of diverse methanogens across a river-to-sea gradient may shed light on adaption strategies and survival mechanisms in methanogens.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-019-8482-3DOI Listing

Publication Analysis

Top Keywords

river-to-sea gradient
16
trophic strategy
12
methanogens
8
diverse methanogens
8
methanogens river-to-sea
8
diversity trophic
8
strategy methanogens
8
methanogens sediments
8
high-throughput sequencing
8
communities samples
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!