Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gibberellic acid (GA3), a plant growth regulator, is widely used in agriculture in many countries to accelerate the growth of fruits and vegetables. We designed histological, immunohistochemical, and biochemical studies to evaluate the deleterious effects of GA3 on the livers of adult pregnant rats and their offspring and to assess the possible ameliorative effect of Nigella sativa Linn. (NsL.oil) against these effects. Twenty-four pregnant albino rats were utilized, randomly divided into four groups: The first group was used as a negative control group, while the second group (positive control group) was provided NsL.oil at a dose of 100 mg/kg of bodyweight. Animals in the third group (GA3 group) were provided 200 ppm of GA3 dissolved in distilled water from the 7th day of pregnancy until 1 day after delivery. Animals in the last group (GA3 + NsL.oil group) were provided GA3 and NsL-oil at the same doses as mentioned above. One day after delivery, each group of lactating mothers and their pups were sacrificed. Liver specimens were subjected to histopathological, immunohistochemical, and biochemical examinations. The livers of rats from the GA3 group showed various degenerative changes, being predominant in the livers of the mothers compared with the offspring. The pathological changes in the livers of the offspring suggested transplacental passage of GA3. The results reveal that GA3 ingestion induced a significant increase in alanine aminotransferase (ALT) and aspartate transaminase (AST) activities in the serum of both groups of mothers and their pups, with a significant increment in lipid peroxidation as evidenced by enhanced malondialdehyde (MDA) levels with significant decrements in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymatic activities in comparison with control groups in the liver of mothers and their offspring. Histopathological examination showed hydropic degeneration and inflammatory cellular infiltration. Additionally, there was fibrosis around the portal area. Moreover, immunolocalization revealed downregulation of the expression of the antiapoptotic marker Bcl-2 in hepatocytes and upregulation of the expression of the apoptotic marker Bax in the treated group. Concomitant use of NsL.oil along with GA3 exerted a considerable reversing effect on histopathological and biochemical changes in the livers of mother groups and their pups. The results of the present study highlight the consequences of exposure to GA3 during pregnancy on hepatic tissue in both mothers and their offspring. Furthermore, the study suggests use of NsL.oil as a potential protective strategy against GA3-induced liver toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12565-019-00488-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!