The swede midge (Contarinia nasturtii Kieffer) is an invasive insect in North America whose feeding has caused a decline of over 60% of total canola acreage in Ontario, Canada since 2011. Temperature-dependent development and mortality information are important to develop an effective pest management strategy for this insect; as the most comprehensive study on C. nasturtii development was completed on populations from the United Kingdom in the 1960s, new geographically relevant information is needed. Contarinia nasturtii eggs, larvae, pupae, and adults were reared from wild populations collected from Elora, Ontario, and allowed to develop at different temperatures. Resulting development rates were fit to a series of growth models and the model with the best relative goodness-of-fit was selected to represent the given life stage. Eggs from Ontario populations developed more quickly than their UK counterparts at temperatures below approximately 17°C, but more slowly at temperatures above 17°C. The same phenomenon was observed in larvae at 20°C. Pupae from both populations had similar development rates, and adult longevity was similar as well. This information will inform the management of C. nasturtii, and may help prevent its spread to other canola-producing regions of North America.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toz095DOI Listing

Publication Analysis

Top Keywords

temperature-dependent development
8
development mortality
8
swede midge
8
contarinia nasturtii
8
north america
8
development rates
8
temperatures 17°c
8
development
5
determining temperature-dependent
4
mortality parameters
4

Similar Publications

The edge structures of carbonaceous materials exhibit temperature-dependent behavior on the atomic scale, with variations in the relative ratios of zigzag, reconstructed 5-7 zigzag (ZZ57), and armchair edges observed at different temperatures. Nevertheless, the mechanisms underlying the interconversion of these edge structures and the influence of the surrounding metals remain unclear. This study investigates the reconstruction and reversible transformation processes of ZZ57 edge structures in carbon materials and examines the effects of different metal atoms (Na, K, and Ca) by using density functional theory.

View Article and Find Full Text PDF

Supercapacitors are rapidly gaining attention as next-generation energy storage devices due to their superior power and energy densities. This study pioneers the investigation of Mn/Zn co-doping in α-Cu₂V₂O₇ (CVO) to enhance its performance as a supercapacitor electrode material. Structural and local Structural properties of Mn/Zn co-doped CVO have been investigated through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-ray Absorption Spectroscopy (XAS), revealing significant distortions that enhance supercapacitor performance.

View Article and Find Full Text PDF

Chromosome-level genome assembly and annotation of the gynogenetic large-scale loach (Paramisgurnus dabryanus).

Sci Data

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.

The large-scale loach (Paramisgurnus dabryanus; Cypriniformes: Cobitidae) is primarily distributed in East Asia. It is an important economic fish species characterized by fast growth, temperature-dependent sex determination and the ability to breathe air. Currently, molecular mechanism studies related to some aspects such as sex determination, toxicology, feed nutrition, growth and genetic evolution have been conducted.

View Article and Find Full Text PDF

By evaluating the stability profiles of each component of a vaccine candidate (antigens, adjuvants), formulation conditions to mitigate vaccine instability can be identified. In this work, two recombinant Cytomegalovirus (CMV) glycoprotein antigens (gB, Pentamer) were formulated with SPA14, a novel liposome-based adjuvant system containing a synthetic TLR4 agonist (E6020) and a saponin (QS21). Analytical characterization and accelerated stability studies were performed with the two CMV antigens, formulated with and without SPA14, under various conditions (temperature, pH, excipients).

View Article and Find Full Text PDF

High-Temperature Optoelectronic Transport Behavior of n-TiO Nanoball-Stick/p-Lightly Boron-Doped Diamond Heterojunction.

Materials (Basel)

January 2025

Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.

The n-TiO nanoballs-sticks (TiO NBSs) were successfully deposited on p-lightly boron-doped diamond (LBDD) substrates by the hydrothermal method. The temperature-dependent optoelectronic properties and carrier transport behavior of the n-TiO NBS/p-LBDD heterojunction were investigated. The photoluminescence (PL) of the heterojunction detected four distinct emission peaks at 402 nm, 410 nm, 429 nm, and 456 nm that have the potential to be applied in white-green light-emitting devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!