A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diagnostic ability of artificial intelligence using deep learning analysis of cyst fluid in differentiating malignant from benign pancreatic cystic lesions. | LitMetric

The diagnosis of pancreatic cystic lesions remains challenging. This study aimed to investigate the diagnostic ability of carcinoembryonic antigen (CEA), cytology, and artificial intelligence (AI) by deep learning using cyst fluid in differentiating malignant from benign cystic lesions. We retrospectively reviewed 85 patients who underwent pancreatic cyst fluid analysis of surgical specimens or endoscopic ultrasound-guided fine-needle aspiration specimens. AI using deep learning was used to construct a diagnostic algorithm. CEA, carbohydrate antigen 19-9, carbohydrate antigen 125, amylase in the cyst fluid, sex, cyst location, connection of the pancreatic duct and cyst, type of cyst, and cytology were keyed into the AI algorithm, and the malignant predictive value of the output was calculated. Area under receiver-operating characteristics curves for the diagnostic ability of malignant cystic lesions were 0.719 (CEA), 0.739 (cytology), and 0.966 (AI). In the diagnostic ability of malignant cystic lesions, sensitivity, specificity, and accuracy of AI were 95.7%, 91.9%, and 92.9%, respectively. AI sensitivity was higher than that of CEA (60.9%, p = 0.021) and cytology (47.8%, p = 0.001). AI accuracy was also higher than CEA (71.8%, p < 0.001) and cytology (85.9%, p = 0.210). AI may improve the diagnostic ability in differentiating malignant from benign pancreatic cystic lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499768PMC
http://dx.doi.org/10.1038/s41598-019-43314-3DOI Listing

Publication Analysis

Top Keywords

cystic lesions
20
diagnostic ability
16
cyst fluid
16
deep learning
12
artificial intelligence
8
intelligence deep
8
fluid differentiating
8
differentiating malignant
8
malignant benign
8
pancreatic cystic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!