Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eururo.2019.04.025 | DOI Listing |
J Cardiovasc Dev Dis
December 2024
Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan.
Three-dimensional (3D) printing is an advanced technology for accurately understanding anatomy and supporting the successful surgical management of complex congenital heart disease (CHD). We aimed to evaluate whether our super-flexible 3D heart models could facilitate preoperative decision-making and surgical simulation for complex CHD. The super-flexible heart models were fabricated by stereolithography 3D printing of the internal and external contours of the heart from cardiac computed tomography (CT) data, followed by vacuum casting with a polyurethane material similar in elasticity to a child's heart.
View Article and Find Full Text PDFPLoS One
December 2024
School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, China.
The proposed work aims to demonstrate the significance of the plastic zone at the tip of an axial crack in a pipeline for managing Stress IntensityFactors(SIF). The three-dimensional finite element model of pressure pipeline with axial cracks was built by utilizing the Ramberg-Osgood X80 material model of pipeline. according to Von Mises yield criterion, the size of plastic zone at crack tip was determined, and the fracture parameters were calculated based on interaction integral method, the plastic stress deformation law, determination of elastic-plastic limit load and plastic correction of SIF at crack tip of pressure pipeline with axial crack were discussed.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan.
In a previous study [H. Shintaku et al., Sensors and Actuators A: Physical 158 (2010): 183-192], an artificially developed auditory sensor device showed a frequency selectivity in the range from 6.
View Article and Find Full Text PDFWorld J Exp Med
December 2024
Department of Anatomy, University of São Paulo, São Paulo 05508-000, Brazil.
The extracellular matrix (ECM) is a non-cellular three-dimensional structure present in all tissues that is essential for the intestinal maintenance, function and structure, as well as for providing physical support for tissue integrity and elasticity. ECM enables the regulation of various processes involved in tissue homeostasis, being vital for healing, growth, migration and cell differentiation. Structurally, ECM is composed of water, polysaccharides and proteins, such as collagen fibers and proteoglycans, which are specifically arranged for each tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!