Study Design: In vitro biomechanical analysis.
Objectives: Compare the destabilizing effects of anterior discectomy to posterior spinal releases.
Summary Of Background Data: Posterior release and pedicle screw fixation has become the accepted form of treatment for lumbar and thoracolumbar pediatric scoliotic spinal deformity. A biomechanical evaluation of posterior releases with comparison to traditional anterior releases has not been reported in the lumbar spine.
Methods: Eleven fresh-frozen human thoracolumbar specimens (T9-L5) were tested by a robotic manipulator (Staubli RX90; moment target of 5.0 Nm, force target of 50 N) in axial rotation (AR), plus lateral and anterior translation (LT and AT). Specimens underwent either sequential anterior release (partial and full discectomy) or posterior release (inferior facetectomy and wide posterior release) from T10 to L4. Partial discectomy retained the posterior 50% of disc and posterior longitudinal ligament, whereas full discectomy removed all of the disc and PLL. Wide posterior release included total facetectomy plus ligamentum flavum and spinous process resection.
Results: Inferior facetectomy produced an average increase of 1.5° ± 1.0° (p = .0625), 1.0 ± 0.8 mm (p = .0313), and 0.2 ± 0.3 mm (p = .156) in AR, LT, and AT, respectively. Compared with partial facetectomy, wide posterior release produced an average additional increase of 8.1° ± 4.0° (p = .0312), 2.0 ± 2.2 mm (p = .4062), and 1.1 ± 1.0 mm (p = .0625) in AR, LT, and AT, respectively. Full discectomy produced 201%, 161%, and 153% of the motion relative to wide posterior release in AR, LT, and AT, respectively (p = .0043, .0087, and .0173). Partial discectomy and wide posterior release proved statistically equivalent.
Conclusions: Wide posterior release of the thoracolumbar spine allows significant correction and may be superior to inferior facetectomy in axial rotation. Although complete discectomy with PLL resection would likely allow greater correction, a more clinically realistic partial discectomy confers similar corrective potential in vitro compared with wide posterior release.
Level Of Evidence: Not applicable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jspd.2018.09.004 | DOI Listing |
Neuroimage
January 2025
Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. Electronic address:
Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes anteriorly past the left.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Medical and Health Sciences, Tel Aviv University, Israel.
Objective: Pigmentary posterior vitreous detachment (PVD), referred to as "black PVD," is a rare entity describing PVD along with pigment dispersion in the vitreous. There are a few case reports describing pigmentary PVD, yet the association between pigmentary PVD and uveal and optic disc tumors was not described before. The aim of this study was to report the clinical features of patients with pigmentary PVD associated with these tumors.
View Article and Find Full Text PDFRev Bras Parasitol Vet
January 2025
Programa de Pós-graduação em Saúde e Produção Animal na Amazônia - PPGSPAA, Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil.
The tucunaré (Cichla sp.) is an Amazonian fish that is heavily commercialized in the state of Amapá, and it can be infected by a variety of parasites, including coccidia of the genus Calyptospora, which are identified at the genus level by analyzing the structures that comprise its morphology. This study aimed to describe the morphology and histopathology of Calyptospora sp.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, IL, USA, 60064.
The medial amygdala (MeA) is activated by social stimuli and manipulations of the MeA disrupt a wide range of social behaviors. Social stress can shift social behaviors and may accomplish this partly via effects on the MeA. However, very little is known about the effects of social stress on the electrophysiological activity of MeA neurons.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan.
Osteoarthritis is caused by damage to the articular cartilage due to bone-on-bone collisions and friction. The length, width, and thickness of the ligaments are expected to change in order to regulate excessive bone-to-bone movement. We aimed to clarify the relationship between ligament morphology and joint surface degeneration in the ankle joints using macroscopic observations and measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!