In this study, we fabricated a temperature-responsive infrared reflector that adjusts to temperature changes by changing its transmittance of incident IR light. The device utilized a thermally induced change in the pitch of a cholesteric liquid crystal (CLC) to achieve near-infrared light reflection in a particular wavelength range. In addition, a polymer-stabilized cholesteric liquid crystal (PSCLC) was used as an alternative to further optimize the device performance. Polyethylene terephthalate (PET) was used as the substrate material to allow the reflector to be flexible. The light transmission performance of the reflector at different bending angles was explored, and no significant effect was found. A simulated solar device was established to study the temperature regulation effects of both CLC and PSCLC devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.013516DOI Listing

Publication Analysis

Top Keywords

cholesteric liquid
16
infrared reflector
8
liquid crystals
8
liquid crystal
8
flexible thermal
4
thermal responsive
4
responsive infrared
4
reflector
4
reflector based
4
cholesteric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!