A highly adaptable fiber laser with pulse-on-demand and precision pulse-duration tuning is presented. It is based on a compact optical design combining the gain-switching technique with the all-fiber master oscillator and pump-recovery amplifier architecture. The approach of laser-pulse stability control by compensation pumping and pulse-duration control by changing the pump wavelength are introduced. In order to prove the concept, a laser setup capable of producing laser pulses with an average power of up to 30 W and a peak power of approximately 1 kW at an improved efficiency and an arbitrary repetition rate is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.012100DOI Listing

Publication Analysis

Top Keywords

highly adaptable
8
fiber laser
8
improved efficiency
8
adaptable gain-switched
4
gain-switched fiber
4
laser
4
laser improved
4
efficiency highly
4
adaptable fiber
4
laser pulse-on-demand
4

Similar Publications

Epsilon toxin (ETX) is an exotoxin produced by Clostridium perfringens type D that induces enterotoxaemia or necrotic intestinal infection in small ruminants and bovine. Immunization is an essential element in preventing the spread of infectious diseases. In recent literature, nanocarriers have exhibited the capacity to deliver protection, stability, and regulated distribution properties to protein-based antigens.

View Article and Find Full Text PDF

Infectious Bursal Disease is a highly contagious, immunosuppressive viral disease of young chicks caused by the Infectious Bursal Disease Virus (IBDV). The study was carried out at the National Veterinary Institute (NVI) of Ethiopia to evaluate the competence of the DF-1 cell culture adapted vaccine strain of IBDV as a vaccine candidate. DF-1 cells at passage 27 confluent monolayer was infected with 1 ml of LC-75 vaccine strain virus by adsorption method and recorded as passage 1 (P).

View Article and Find Full Text PDF

Objective: In recent years, the application of robotic assistance in diagnostic and therapeutic endovascular neurointerventional procedures has gained notable attention. In this systematic review and meta-analysis, we aim to evaluate the feasibility, safety, and current indications of robotic-assisted neurointerventions and to assess the degree of robotic assistance and reasons for unplanned manual conversion from robotic assistance.

Methods: We searched Medline, Scopus, Web of Science, and Cochrane Library databases following PRISMA guidelines and included studies with ≥ 4 patients reporting on robotic-assisted neurointerventions.

View Article and Find Full Text PDF

Exploring the Gastrointestinal Microbiome of Eurasian Griffon Vultures () Under Rehabilitation in Portugal and Their Potential Role as Reservoirs of Human and Animal Pathogens.

Vet Sci

December 2024

CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.

The Eurasian griffon vulture (), a widely distributed scavenger, plays a crucial role in ecosystem health by consuming decomposing carcasses. Scavengers have adapted to avoid disease from the rotting carrion they feed on, probably through a specialized gut microbiome. This study aimed to characterize the gut microbiome of (n = 8) present in two rehabilitation centers in mainland Portugal and evaluate their potential as reservoirs of pathogens.

View Article and Find Full Text PDF

Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!