Limited information on the potential toxicity of ionic liquids (ILs) becomes the bottleneck that creates a barrier in their large-scale application. In this work, two quantitative structure-activity relationships (QSAR) models were used to evaluate the toxicity of ILs toward the acetylcholinesterase enzyme using multiple linear regression (MLR) and extreme learning machine (ELM) algorithms. The structures of 57 cations and 21 anions were optimized using quantum chemistry calculations. The electrostatic potential surface area () and the screening charge density distribution area () descriptors were calculated and used for prediction of IL toxicity. Performance and predictive aptitude between MLR and ELM models were analyzed. Highest squared correlation coefficient (), and also lowest average absolute relative deviation (AARD%) and root-mean-square error (RMSE) were observed for training set, test set, and total set for the ELM model. These findings validated the superior performance of ELM over the MLR toxicity prediction model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539465 | PMC |
http://dx.doi.org/10.3390/ijms20092186 | DOI Listing |
Adv Mater
January 2025
Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao. University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
Biopolymer based electrolytes can overcome current performance limitations of lithium-ion batteries (LIBs). Biopolymers enable electrolytes with high ionic conductivities and wide electrochemical stability windows. While the biobased character of natural materials is claimed as an inherent advantage in meeting current environmental sustainability challenges, further research is required to quantify and compare their environmental impacts as electrolytes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Engineering, Modeling, and Applied Sciences (CECS), Federal University of ABC (UFABC), São Paulo 09210-580, Brazil. Electronic address:
The scarcity of water resources and their pollution are vital to modern civilization. Thus, adsorptive membranes are promising candidates to be applied in the filtration systems to improve the water quality. In summary, this study investigated the effect of chitosan (CS) in the morphological, chemical, and physical aspects of PLA-based membranes incorporating chitosan obtained by electrospinning process, their adsorption behavior in multielement aqueous systems containing Cr, Cu, Zn, Mn , Ni, and Cd in pH 4, and the possible removal mechanism on the composite electrospun membrane's surface.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, Hunan, China.
Ionogels are a promising solution to improve the functionality of electrochromic devices (ECDs) by solving issues related to traditional liquid electrolytes, such as volatility, toxicity, and leakage. However, manufacturing ionogels is complicated as it often involves cross-linking polymerization or chemical sol-gel processes, requiring large amounts of inorganic or polymeric gelators. This results in low ionic conductivity and poor ECD performance.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biological Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
Heavy metal ions, are non-biodegradable, high toxic tendency, and have serious hazardous effects on the health of humans. Then, removing them from the environment using different techniques is necessary. Several routes are expensive, low-efficient, and require a long time to achieve adsorption equilibrium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!