Two bentonites from Paraíba (Northeastern Brazil) were impregnated with heteropoly phosphomolybdic HPMoO (HPMo). The materials produced were characterized by various techniques such as N adsorption-desorption (specific surface area, SSA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA/DTG), Scanning Electron Microscopy (SEM) equipped with Dispersive Energy X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-vis), acid-base titration analysis. The catalytic activity of these materials was tested in the esterification of a waste from palm oil deodorization and the main results obtained (about 93.3% of conversion) indicated that these materials have potential to act as heterogeneous solid acid catalysts. The prepared materials exhibited satisfactory catalytic performance even after a very simple recycling process in three reuse cycles, without significant loss of their activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539966 | PMC |
http://dx.doi.org/10.3390/ma12091431 | DOI Listing |
Gels
November 2024
Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia.
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.
View Article and Find Full Text PDFHeliyon
October 2024
Istanbul Technical University, Chemical and Metallurgical Faculty, Chemical Engineering Department, 34469, Maslak, Istanbul, Turkey.
In this study, Ordu-Unye bentonite was used as an adsorbent in the removal of zinc from aqueous solutions. The aim of the experimental part of the study was to ascertain how zinc removal was affected by variables such as pH, adsorbent amount, contact time, and initial zinc concentration. In the second part of the experiments, bentonite was modified with two different acids and the adsorption performance of modified bentonite was also investigated.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2024
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China. Electronic address:
Food Sci Nutr
November 2024
Department of Plant Production Saffron Institute, University of Torbat Heydarieh Torbat Heydarieh Iran.
In this study, anthocyanin was extracted from saffron tepals utilizing the ultrasound-assisted extraction method. The adsorbents of raw bentonite (RB), acid activation of bentonite (AA) thermal activation of bentonite (TA), and acid and thermal activation of bentonite (ATA) were employed to separate anthocyanin from solution. The influence of the operating parameters was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!