Deep-sea Hydrothermal Vent Bacteria as a Source of Glycosaminoglycan-Mimetic Exopolysaccharides.

Molecules

IFREMER, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, 44311 Nantes, France.

Published: May 2019

Bacteria have developed a unique strategy to survive in extreme environmental conditions through the synthesis of an extracellular polymeric matrix conferring upon the cells a protective microenvironment. The main structural component of this complex network constitutes high-molecular weight hydrophilic macromolecules, namely exopolysaccharides (EPS). EPS composition with the presence of particular chemical features may closely be related to the specific conditions in which bacteria evolve. Deep-sea hydrothermal vent bacteria have already been shown to produce EPS rich in hexosamines and uronic acids, frequently bearing some sulfate groups. Such a particular composition ensures interesting functional properties, including biological activities mimicking those known for glycosaminoglycans (GAG). The aim of the present study was to go further into the exploration of the deep-sea hydrothermal vent IFREMER (French Research Institute for Exploitation of the Sea) collection of bacteria to discover new strains able to excrete EPS endowed with GAG-like structural features. After the screening of our whole collection containing 692 strains, 38 bacteria have been selected for EPS production at the laboratory scale. EPS-producing strains were identified according to 16S rDNA phylogeny. Chemical characterization of the obtained EPS highlighted their high chemical diversity with the presence of atypical compositional patterns. These EPS constitute potential bioactives for a number of biomedical applications, including regenerative medicines and cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539532PMC
http://dx.doi.org/10.3390/molecules24091703DOI Listing

Publication Analysis

Top Keywords

deep-sea hydrothermal
12
hydrothermal vent
12
vent bacteria
8
eps
7
bacteria
6
bacteria source
4
source glycosaminoglycan-mimetic
4
glycosaminoglycan-mimetic exopolysaccharides
4
exopolysaccharides bacteria
4
bacteria developed
4

Similar Publications

Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans.

Biology (Basel)

November 2024

Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Organisms occupy diverse ecological niches worldwide, each with characteristics finely evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as one of Earth's extreme environments, may have adapted to withstand severe conditions, including elevated temperatures and pressure. This study compares the exoskeletons of two vent crustaceans (bythograeid crab sp.

View Article and Find Full Text PDF

Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown.

View Article and Find Full Text PDF

Deep sea microbial communities play a significant role in global biogeochemical processes. However, the depth-wise metabolic potential of microbial communities in hydrothermally influenced Central Indian Ridge (CIR) and Southwest Indian Ridge (SWIR) remains elusive. In this study, a comprehensive functional microarray-based approach was used to understand factors influencing the metabolic potential of microbial communities and depth-driven differences in microbial functional gene composition in CIR and SWIR.

View Article and Find Full Text PDF

Confined by the Mid-Atlantic Ridge and the European continental shelf, the deep-sea acorn barnacle (Hoek, 1883) lives in the northeast Atlantic deep sea, where it has been frequently reported in high current areas. Cemented to a solid substrate during its entire adult life, the species can only disperse by means of planktotrophic nauplius larvae. This study reports on the occurrence, ecology and genetic connectivity of from four sites within the northeastern Iceland Basin and presents the first record of the species living affiliated with hydrothermal vent field on the Reykjanes Ridge axis.

View Article and Find Full Text PDF

The origins of light-independent magnetoreception in humans.

Front Hum Neurosci

November 2024

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

Article Synopsis
  • Earth's abundance of iron has been essential for the development of life, influencing biochemical processes and leading to the emergence of early life forms near hydrothermal vents.
  • Iron also plays a role in the evolution of organisms like magnetotactic bacteria, which can detect the Earth's geomagnetic field, showing adaptations beyond humans' conventional senses.
  • Research on species such as zebrafish and pigeons indicates that various life forms have specialized mechanisms for geomagnetic sensing, hinting at complex interactions in the brain related to magnetic fields and their implications for human magnetoreception.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!