Due to the importance of proanthocyanidin bioactivity and its relationship with chemical structure, ultrasound-assisted extraction and purification schemes were proposed to evaluate the proanthocyanidin content and analyze the structural composition and potential bioactivities of different proanthocyanidin fractions from Chinese wild rice ( ). Following an optimized extraction procedure, the crude wild rice proanthocyanidins (WRPs) were purified using n-butanol extraction, chromatography on macroporous resins, and further fractionation on Sephadex LH-20 to yield six specific fractions (WRPs-1-WRPs-6) containing proanthocyanidin levels exceeding 524.19 ± 3.56 mg/g extract. Structurally, (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin were present as both terminal and extension units, and (-)-epicatechin was the major extension unit, in each fraction. This is the first preparation of WRP fractions with a different mean degree of polymerization (mDP), ranging from 2.66 ± 0.04 to 10.30 ± 0.46. A comparison of the bioactivities of these fractions revealed that fractions WRPs-1-WRPs-5 had significant DPPH radical scavenging activities, whereas fraction WRPs-6 with a high mDP showed better α-glucosidase and pancreatic lipase inhibitory effects. These findings should help define possible applications of WRPs to functional foods or nutraceuticals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539017PMC
http://dx.doi.org/10.3390/molecules24091681DOI Listing

Publication Analysis

Top Keywords

wild rice
12
chinese wild
8
structural composition
8
composition potential
8
potential bioactivities
8
bioactivities fractions
8
fractions
6
extraction
4
extraction proanthocyanidins
4
proanthocyanidins chinese
4

Similar Publications

This study assessed the effects of fenobucarb (F) (1%, 10%, and 20% of the LC-96h value) on the brain cholinesterase (AChE) activity, food intake (FI), feed conversion rate (FCR), and growth of silver barb (, Bleeker, 1849). It also assessed the AChE inhibition levels that cause the abnormal swimming, behavior, and mortality of silver barb and how the feeding regime affects the recovery rate of the AChE activity. The results showed that the brain AChE inhibition increased with the F concentrations.

View Article and Find Full Text PDF

Plants are susceptible to infection by various pathogens with high epidemic potential. pv () causes bacterial blight in rice, one of the most significant diseases in both temperate and tropical regions. In this study, we report the identification and characterization of , a sucrose-inducible transcription factor, that plays a role in the plant defense responses following infection.

View Article and Find Full Text PDF

Rice (Oryza sativa) is a staple food crop globally, with origins in wild progenitors within the AA genome group of Oryza species. Oryza rufipogon and Oryza meridionalis are native to tropical Asia and Northern Australia and offer unique genetic reservoirs. Here we explored the relationships of the genomes of these wild rice species with the domesticated rice genome.

View Article and Find Full Text PDF

Dwarfism is a major trait for developing lodging-resistant rice cultivars. Gamma irradiation-induced mutagenesis has proven to be an effective method for generating dwarf rice mutants. In this research, we isolated a dwarf mutant from Anna R (4) in the M generation and subsequently stabilized the trait through successive selfing of progeny across the M-M generations.

View Article and Find Full Text PDF

A NAC transcription factor NAC50 regulates Fe reutilization in Arabidopsis under Fe-deficient condition.

Physiol Plant

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China.

A lack of iron (Fe) inhibits the growth and development of plants, leading to reduced agricultural yields and quality. In the last ten years, numerous studies have focused on the induction of Fe uptake and translocation under Fe deficiency, but the regulatory mechanisms governing Fe reutilization within plants are still not well understood. Here, we demonstrated the involvement of the NAM/ATAF1/2/CUC2 (NAC) transcription factor NAC50 in response to Fe shortage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!