Background And Aims: Macrophages play an important role in the development and destabilization of advanced atherosclerotic plaques. Hence, the clinical imaging of macrophage content in advanced plaques could potentially aid in identifying patients most at risk of future clinical events. The lifetime of the autofluorescence emission from atherosclerotic plaques has been correlated with lipids and macrophage accumulation in ex vivo human coronary arteries, suggesting the potential of intravascular endogenous fluorescence or autofluorescence lifetime imaging (FLIM) for macrophage imaging. The aim of this study was to quantify the accuracy of the coronary intima autofluorescence lifetime to detect superficial macrophage accumulation in atherosclerotic plaques.
Methods: Endogenous FLIM imaging was performed on 80 fresh postmortem coronary segments from 23 subjects. The plaque autofluorescence lifetime at an emission spectral band of 494 ± 20.5 nm was used as a discriminatory feature to detect superficial macrophage accumulation in atherosclerotic plaques. Detection of superficial macrophage accumulation in the imaged coronary segments based on immunohistochemistry (CD68 staining) evaluation was taken as the gold standard. Receiver Operating Characteristic (ROC) curve analysis was applied to select an autofluorescence lifetime threshold value to detect superficial macrophages accumulation.
Results: A threshold of 6 ns in the plaque autofluorescence lifetime at the emission spectral band of 494 ± 20.5 nm was applied to detect plaque superficial macrophages accumulation, resulting in ∼91.5% accuracy.
Conclusions: This study demonstrates the capability of endogenous FLIM imaging to accurately identify superficial macrophages accumulation in human atherosclerotic plaques, a key biomarker of atherosclerotic plaque vulnerability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536321 | PMC |
http://dx.doi.org/10.1016/j.atherosclerosis.2019.04.223 | DOI Listing |
The polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis.
View Article and Find Full Text PDFCryopreservation is a widely used technique to preserve biological samples for extended periods of time at low temperatures. Even though it is known to have significant effects on cell viability, its effect on their metabolism remains unexplored. Studying how cryopreservation influences the metabolism of cells is important to guarantee the reliability of samples transported between sites for analysis.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
Organic red/near-infrared (NIR) room-temperature phosphorescence (RTP) holds significant potential for autofluorescence-free bioimaging and biosensing due to its prolonged persistent luminescence and exceptional penetrability. However, achieving activatable red/NIR organic RTP probes with tunable emission in aqueous solution remains a formidable challenge. Here we report on aqueous organic RTP probes with red/NIR phosphorescence intensity and lifetime amplification.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Blue Growth Research Lab, Ghent University, Ostend Science Park, Ostend, Belgium.
In contrast to microplastics, studying the interactions of nanoplastics (NPs) with primary producers such as marine microalgae remains challenging. This is attributed to the lack of adequate visualization methods that can distinguish NPs from autofluorescent biological material such as marine algae. The aim of this study was to develop a method for labeling and visualizing nonfluorescent micro- and nanoplastics (MNPs) of various polymer types, shapes, and sizes, in interaction with marine primary producers, which are autofluorescent.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
Thermally activated delayed fluorescence (TADF)-based nanoprobes are promising candidates as bioimaging agents, yet the fine-tuning of their photophysical properties through the modulation of the surrounding matrices remains largely unexplored. Herein, we report the development of polypeptide-TADF nanoprobes, where the rigid, α-helical polypeptide scaffold plays a critical role in enhancing the emission intensity and lifetime of the TADF fluorophore for bioimaging. The α-helical scaffolds not only spatially separated TADF molecules to avoid self-quenching but also anchored the dyes with minimized rotation and vibration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!