A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An aryl isonitrile compound with an improved physicochemical profile that is effective in two mouse models of multidrug-resistant Staphylococcus aureus infection. | LitMetric

An aryl isonitrile compound with an improved physicochemical profile that is effective in two mouse models of multidrug-resistant Staphylococcus aureus infection.

J Glob Antimicrob Resist

Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, 610 Purdue Mall, West Lafayette, IN 47907, USA. Electronic address:

Published: December 2019

Objectives: The aim of this study was to investigate the antibacterial activity of a synthetic aryl isonitrile compound (35) that was developed as part of a compound library to identify new antibacterial agents effective against methicillin-resistant Staphylococcus aureus (MRSA).

Methods: Compound 35 was evaluated against MRSA isolates by the broth microdilution assay and for toxicity to mammalian keratinocytes using the MTS assay. A multistep resistance selection assay was conducted to investigate MRSA resistance development to 35. A Caco-2 bidirectional permeability assay was employed to evaluate the ability of 35 to permeate across the gastrointestinal tract, and compound 35 was incubated with human liver microsomes to determine susceptibility to hepatic metabolism. Finally, compound 35 was evaluated in an uncomplicated MRSA skin infection mouse model and an MRSA neutropenic thigh infection mouse model.

Results: Compound 35 inhibited the growth of MRSA clinical isolates at 2-4μM and was non-toxic to human keratinocytes. No resistance formation was observed with MRSA against compound 35 after 10 serial passages. In a murine skin wound model, compound 35 significantly reduced the burden of MRSA, similar to the antibiotic fusidic acid. Compound 35 exhibited a marked improvement both in permeability and stability to hepatic metabolism (half-life >11h) relative to the first-generation lead compound. In a neutropenic thigh infection mouse model, compound 35 successfully reduced the burden of MRSA in immunocompromised mice.

Conclusion: In summary, compound 35 was identified as a new lead aryl isonitrile compound that warrants further investigation as a novel antibacterial agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821587PMC
http://dx.doi.org/10.1016/j.jgar.2019.04.016DOI Listing

Publication Analysis

Top Keywords

compound
14
aryl isonitrile
12
isonitrile compound
12
infection mouse
12
staphylococcus aureus
8
compound evaluated
8
mrsa
8
hepatic metabolism
8
mouse model
8
neutropenic thigh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!