Objective: To assess the safety and immunogenicity of the MF59-adjuvanted seasonal trivalent inactivated influenza vaccine (aIIV3; Fluad) in children aged 6 months through 5 years who are at risk of influenza complications.
Methods: A retrospective analysis was performed to examine unsolicited adverse events (AEs) in an integrated dataset from six randomized clinical studies that compared aIIV3 with non-adjuvanted inactivated influenza vaccines (IIV3). The integrated safety set comprised 10 784 children, of whom 373 (3%) were at risk of influenza complications.
Results: The at-risk safety population comprised 373 children aged 6 months through 5 years: 179 received aIIV3 and 194 received non-adjuvanted IIV3 (128 subjects received a licensed IIV3). The most important risk factors were respiratory system illnesses (62-70%) and infectious and parasitic diseases (33-39%). During the treatment period, unsolicited AEs occurred in 54% of at-risk children and 55% of healthy children who received aIIV3; of those receiving licensed IIV3, 59% of at-risk and 62% of healthy subjects reported an unsolicited AE. The most common AEs were infections, including upper respiratory tract infection. Serious AEs (SAEs) were reported in <10% of at-risk subjects, and no vaccine-related SAEs were observed. In the immunogenicity subset (involving 103 participants from one study), geometric mean titers (GMTs) were approximately 2- to 3-fold higher with aIIV3 than with IIV3 for all three homologous strains (A/H1N1, A/H3N2, and B). Seroconversion rates were high for both aIIV3 (79-96%) and IIV3 (83-89%).
Conclusions: In young children at risk of influenza complications, aIIV3 was well-tolerated and had a safety profile that was generally similar to that of non-adjuvanted IIV3. Similar to the not-at-risk population, the immune response in at-risk subjects receiving aIIV3 was increased over those receiving IIV3, suggesting aIIV3 is a valuable option in young children at risk of influenza complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijid.2019.04.023 | DOI Listing |
Arch Razi Inst
June 2024
Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
Highly pathogenic avian influenza (HPAI) is a viral disease caused by some H5 and H7 subtypes of influenza virus type A in most species of birds, especially poultry. HPAI viruses are among the most challenging viruses that threaten both human and animal health. Consequently, various strategies, such as the use of vaccines have been proposed to control the disease.
View Article and Find Full Text PDFVaccine
December 2024
Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA. Electronic address:
The immune memory imprinted during an individual's initial influenza exposure (influenza imprinting) has long-lasting effects on the host's response to subsequent influenza infections and vaccinations. Here, we investigate how different influenza virus imprinting impacts the immune responses to subunit, inactivated virus, and protein-based nanoparticle vaccines in Balb/c mice. Our results indicated a phylogenetic distance-dependent effect of influenza imprinting on subunit hemagglutinin (HA) or formalin-inactivated (FI) virus vaccine immunizations.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany.
Rapid and sensitive diagnostic measures are a pre-requisite for the control of SARS-CoV-2 outbreaks. Dogs detect SARS-CoV-2-infected human individuals with high speed due to their extraordinary olfactory acuity. In the post-pandemic phase of SARS-CoV-2 it is difficult to obtain samples from infected humans for scent dog training.
View Article and Find Full Text PDFVaccine
December 2024
Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address:
In Brazil, at least four lineages of influenza A virus circulate pig population: 2009 H1N1 flu pandemic (pH1N1), human-seasonal origin H3N2, H1N1 and H1N2 (huH1 lineages) viruses. Studies related to the occurrence of swine influenza A virus (SIAV) in Brazilian herds have been detecting an increase of occurrence of huH1 lineages. This study aimed to construct recombinant vaccines against the huH1N1 virus and test the immunogens in a murine model.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Hangzhou Disease Prevention and Control Center, Hangzhou, P.R. China.
From 2020, influenza viruses circulation was largely affected by the global coronavirus disease (COVID-19) pandemic, notably leading to the extinction of the B/Yamagata lineage and raising questions about the relevance of the quadrivalent influenza vaccine, which includes this lineage. Evaluating vaccine effectiveness (VE) against influenza infections is important to inform future vaccine programs. A test-negative case-control study was conducted in five tertiary hospitals in Hangzhou, the capital city of Zhejiang province, China, enrolling medically-attended patients aged >6 months who presented with influenza-like illness (ILI) from October 1, 2023, to March 31, 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!