Liposome mediated-CYP1A1 gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment strategy of lung cancer.

Int J Pharm

Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China. Electronic address:

Published: July 2019

AI Article Synopsis

  • Lung cancer is primarily linked to tobacco smoking through the production of harmful compounds called polycyclic aromatic hydrocarbons (PAHs), with the CYP1A1 gene playing a crucial role in their metabolism.
  • The study investigates the use of RNA interference (RNAi) to inhibit the overactive CYP1A1 gene, employing lipid-coated microparticles to deliver siRNA that reduces CYP1A1 expression.
  • Results indicate that targeting the CYP1A1 gene can suppress tumor growth in both cell cultures and animal models, suggesting that this liposome-based gene delivery method could be a promising strategy for lung cancer treatment in the future.

Article Abstract

The occurrence of lung cancer is linked with tobacco smoking, mainly through the generation of polycyclic aromatic hydrocarbons (PAHs). Elevated activity of cytochrome P4501A1 (CYP1A1) plays an important role in the metabolic processing of PAHs and its carcinogenicity. The present work aimed to investigate the role of CYP1A1 gene in PAH-mediated growth and tumor development in vitro and using an in vivo animal model. RNAi strategy was utilized to inhibit the overexpression of CYP1A1 gene using cationic liposomes generated using a lipid film-coated proliposome microparticles. Treatment of PAH-induced human alveolar adenocarcinoma cell line with cationic liposomes carrying CYP1A1 siRNA resulted in down regulation of CYP1A1 mRNA, protein as well as its enzymatic activity, triggering apoptosis and inhibiting multicellular tumor spheroids formation in vitro. Furthermore, silencing of CYP1A1 gene in BALB/c nude xenografts inhibited tumor growth via down regulation of CYP1A1 expression. Altogether, our findings showed that liposome-based gene delivery technology is a viable and stable approach for targeting cancer causing genes such as CY1PA1. This technology facilitated by the use of sugar particles coated with lipid films has demonstrated ability to generate anticancer effects that might be used in the future for therapeutic intervention and treatment of lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.04.078DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
cyp1a1 gene
12
lipid film-coated
8
cationic liposomes
8
regulation cyp1a1
8
cyp1a1
7
gene
5
liposome mediated-cyp1a1
4
mediated-cyp1a1 gene
4
gene silencing
4

Similar Publications

Hypermagnesemia- and Hyperphosphatemia-Associated Cardiac Arrest after Injection of a Novel Magnesium-Based Bone Cement in Spinal Surgery.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Department of Orthopaedic Surgery, Singapore General Hospital, Singapore (Dr. Loh, Dr. Ling, Dr. Jiang, and Lim) and the Department of Surgical Intensive Care, Division of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Singapore (Dr. Goh).

We report a case of pulseless electrical activity (PEA) associated with profound hypermagnesemia immediately after cementation of a novel magnesium-based cement in spine surgery. During T8 to T12 posterior instrumentation and decompression laminectomy for vertebral metastasis secondary to lung cancer, a 61-year-old Chinese woman developed sudden hypotension and went into PEA immediately after injection of a novel magnesium-based cement. Intraoperative fluoroscopic imaging did not show any notable cement extravasation.

View Article and Find Full Text PDF

Purpose: Datopotamab deruxtecan (Dato-DXd) is a trophoblast cell-surface antigen-2-directed antibody-drug conjugate with a highly potent topoisomerase I inhibitor payload. The TROPION-Lung05 phase II trial (ClinicalTrials.gov identifier: NCT04484142) evaluated the safety and clinical activity of Dato-DXd in patients with advanced/metastatic non-small cell lung cancer (NSCLC) with actionable genomic alterations progressing on or after targeted therapy and platinum-based chemotherapy.

View Article and Find Full Text PDF

Human papillomavirus 16 and human papillomavirus 18 have been associated with different life-threatening cancers, including cervical, lung, penal, vulval, vaginal, anal, and oropharyngeal cancers, while cervical cancer is the most prominent one. Several research studies have suggested that the oncoproteins E6 and E7 are the leading cause of cancers associated with the human papillomavirus infection. Therefore, we developed two mRNA vaccines (V1 and V2) targeting these oncoproteins.

View Article and Find Full Text PDF

Background: Abdominal aortic aneurysm (AAA) is more common in Non-small cell lung cancer (NSCLC) patients. Considering that ruptured AAA is potentially fatal, timely management of AAA would result in long-term survival benefits. We assess the prevalence and characteristics of AAA in resectable NSCLC patients who would benefit from AAA surveillance.

View Article and Find Full Text PDF

Association of radiation-induced normal tissue toxicity with a high genetic risk for rheumatoid arthritis.

J Natl Cancer Inst

January 2025

Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom.

Purpose: Overlapping genes are involved with rheumatoid arthritis (RA) and DNA repair pathways. Therefore, we hypothesised that patients with a high polygenic risk score (PRS) for RA will have an increased risk of radiotherapy (RT) toxicity given the involvement of DNA repair.

Methods: Primary analysis was performed on 1494 prostate cancer, 483 lung cancer and 1820 breast cancer patients assessed for development of RT toxicity in the REQUITE study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!