Wallerian degeneration (WaD), commonly secondary to cerebral infarction, is the descending damage of fiber tracts with their accompanying myelin sheaths. However, whether this sequential injury can occur in non-ischemic corpus callosum (CC) and striatum in focal cortical ischemic model has not been fully demonstrated. The present study aimed to elucidate detailed histopathologic changes in CC and striatum after acute focal cortical infarction induced by permanent distal middle cerebral artery occlusion (dMCAO) in Sprague-Dawley rat. We found that myelin integrity, myelin-related proteins, MBP and MAG, and NF200-marked neurofilaments were all compromised in non-ischemic white matter regions, bilateral CC and ipsilateral striatum, along with cortical ischemia (all P < 0.05). Electron microscopy showed wide gaps between myelin sheath layers or between axon and myelin, with an abnormal folding of myelin sheath, and enlarged fluid-filled areas. APP accumulations were noted at 24 h post-dMCAO in those non-ischemic regions, and the deposition prolonged until 14 days after cortical ischemia (all P < 0.05). Moreover, in these areas, microglia and astrocytes were robustly and persistently activated in different patterns. No substantial changes were observed in contralateral striatum. In conclusion, our results suggest that WaD may be involved in non-ischemic CC and striatum after focal cortical infarction, accompanied by APP aggregation and neuroglia initiation forming the glial scar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2019.04.023 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China.
Aims: The comorbidity of anxiety-like symptoms in neuropathic pain (NP) is a significant yet often overlooked health concern. Anxiety sufferers may have a lower tolerance for pain, but which is difficult to treat. Accumulating evidence suggests a strong link between astrocytes and the manifestation of NP with concurrent anxiety-like behaviors.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates.
View Article and Find Full Text PDFNeurology
January 2025
Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy.
Objectives: Cerebral amyloid angiopathy (CAA) is the main driver of amyloid-related imaging abnormalities (ARIAs) in Alzheimer disease (AD). We compared different versions of the Boston criteria for CAA diagnosis in AD.
Methods: This article presents a single-center analysis (outpatient neurodegenerative clinic) of patients with AD with mild cognitive impairment (MCI) or early dementia, meeting NIA-AA criteria and having biological amyloid confirmation (CSF or imaging).
Hum Brain Mapp
February 2025
Université libre de Bruxelles (ULB), UNI - ULB Neuroscience Institute, Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN2T), Brussels, Belgium.
Language control processes allow for the flexible manipulation and access to context-appropriate verbal representations. Functional magnetic resonance imaging (fMRI) studies have localized the brain regions involved in language control processes usually by comparing high vs. low lexical-semantic control conditions during verbal tasks.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!