Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microwave irradiation has great potential to control chemical reactions remotely, particularly reactions that involve electron transfer. In this study, we found that the reduction reaction of bipyridine derivatives on metal nickel particles was accelerated or decelerated by 2.45 GHz microwaves without an alteration of the reaction temperature. The order of the extent of the microwave acceleration of the electron transfer reaction coincided with the negativity of the redox potential of the bipyridine derivatives, i.e., the electron transfer with smaller Δ G was significantly enhanced by microwave irradiation. By applying Marcus' electron transfer theory, we propose two mechanisms of the microwave effect on electron transfer reactions, i.e., vibration of the electrons in Ni particles to make the electron transfer easier and rotation of the water molecules to prevent the reorganization of the hydrated systems after the electron transfer reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b00629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!