It is increasingly common in oncology practice to perform tumour sequencing using large cancer panels. For pathogenic sequence variants in cancer susceptibility genes identified on tumour-only sequencing, it is often unclear whether they are of somatic or constitutional (germline) origin. There is wide-spread disparity regarding both the extent to which systematic 'germline-focussed analysis' is carried out upon tumour sequencing data and for which variants follow-up analysis of a germline sample is carried out. Here we present analyses of paired sequencing data from 17 152 cancer samples, in which 1494 pathogenic sequence variants were identified across 65 cancer susceptibility genes. From these analyses, the European Society of Medical Oncology Precision Medicine Working Group Germline Subgroup has generated (i) recommendations regarding germline-focussed analyses of tumour-only sequencing data, (ii) indications for germline follow-up testing and (iii) guidance on patient information-giving and consent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683854 | PMC |
http://dx.doi.org/10.1093/annonc/mdz136 | DOI Listing |
Pathology
June 2024
Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown NSW, Australia; Institute of Precision Medicine and Bioinformatics, Sydney Local Health District, Camperdown, NSW, Australia; New South Wales Health Pathology (East), NSW, Australia; Central Clinical School, Faculty of Medicine and Health, the University of Sydney, NSW, Australia. Electronic address:
DNA sequencing of tumour tissue has become the standard care for many solid cancers because of the option to detect somatic variants that have significant therapeutic, diagnostic and prognostic implications. Variants found within the tumour may be either somatic or germline in origin. Somatic cancer gene panels are developed to detect acquired (somatic) variants that are relevant for therapeutic or molecular characterisation of the tumour, expanding gene panels now include genes which may also inform patient management such as cancer predisposition syndromes (CPS) genes.
View Article and Find Full Text PDFTransl Lung Cancer Res
June 2023
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: The homologous recombination (HR) repair pathway plays a key role in double-stranded DNA break repair, and germline HR pathway gene variants are associated with increased risk of several cancers, including breast and ovarian cancer. HR deficiency is also a therapeutically targetable phenotype.
Methods: Somatic (tumour-only) sequencing was performed on 1,109 cases of lung tumors, and the pathological data were reviewed to filter for lung primary carcinomas.
Leukemia
March 2023
Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK.
Childhood B-cell acute lymphoblastic leukaemia (B-ALL) is characterised by recurrent genetic abnormalities that drive risk-directed treatment strategies. Using current techniques, accurate detection of such aberrations can be challenging, due to the rapidly expanding list of key genetic abnormalities. Whole genome sequencing (WGS) has the potential to improve genetic testing, but requires comprehensive validation.
View Article and Find Full Text PDFInt J Mol Sci
December 2022
Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain.
The search for immunotherapy biomarkers in Microsatellite Instability High/Deficient Mismatch Repair system (MSI-H/dMMR) metastatic colorectal cancer (mCRC) is an unmet need. Sixteen patients with mCRC and MSI-H/dMMR (determined by either immunohistochemistry or polymerase chain reaction) treated with PD-1/PD-L1 inhibitors at our institution were included. According to whether the progression-free survival with PD-1/PD-L1 inhibitors was longer than 6 months or shorter, patients were clustered into the IT-responder group (: 9 patients) or IT-resistant group (: 7 patients), respectively.
View Article and Find Full Text PDFBr J Cancer
April 2023
Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.
Background: Targeted RNA sequencing (RNA-seq) from FFPE specimens is used clinically in cancer for its ability to estimate gene expression and to detect fusions. Using a cohort of NSCLC patients, we sought to determine whether targeted RNA-seq could be used to measure tumour mutational burden (TMB) and the expression of immune-cell-restricted genes from FFPE specimens and whether these could predict response to immune checkpoint blockade.
Methods: Using The Cancer Genome Atlas LUAD dataset, we developed a method for determining TMB from tumour-only RNA-seq and showed a correlation with DNA sequencing derived TMB calculated from tumour/normal sample pairs (Spearman correlation = 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!