In order to record the stream of autobiographical information that defines our unique personal history, our brains must form durable memories from single brief exposures to the patterned stimuli that impinge on them continuously throughout life. However, little is known about the computational strategies or neural mechanisms that underlie the brain's ability to perform this type of "online" learning. Based on increasing evidence that dendrites act as both signaling and learning units in the brain, we developed an analytical model that relates online recognition memory capacity to roughly a dozen dendritic, network, pattern, and task-related parameters. We used the model to determine what dendrite size maximizes storage capacity under varying assumptions about pattern density and noise level. We show that over a several-fold range of both of these parameters, and over multiple orders-of-magnitude of memory size, capacity is maximized when dendrites contain a few hundred synapses-roughly the natural number found in memory-related areas of the brain. Thus, in comparison to entire neurons, dendrites increase storage capacity by providing a larger number of better-sized learning units. Our model provides the first normative theory that explains how dendrites increase the brain's capacity for online learning; predicts which combinations of parameter settings we should expect to find in the brain under normal operating conditions; leads to novel interpretations of an array of existing experimental results; and provides a tool for understanding which changes associated with neurological disorders, aging, or stress are most likely to produce memory deficits-knowledge that could eventually help in the design of improved clinical treatments for memory loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6527246 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1006892 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!