We present a statistical analysis of the experimental trajectories of colloids in a dilute suspension of the green algae Chlamydomonas reinhardtii. The measured probability density function (pdf) of the displacements of colloids covers 7 orders of magnitude. The pdfs are characterized by non-Gaussian tails for intermediate time intervals, but nevertheless they collapse when scaled with their standard deviation. This diffusive scaling breaks down for longer time intervals and the pdf becomes Gaussian. However, the mean squared displacements of tracer positions are linear over the complete measurement time interval. Experiments are performed for various tracer diameters, swimmer concentrations, and mean swimmer velocities. This allows a rigorous comparison with several theoretical models. We can exclude a description based on an effective temperature and other mean field approaches that describe the irregular motion as a sum of the fluctuating far field of many microswimmers. The data are best described by the microscopic model by J.-L. Thiffeault, Distribution of particle displacements due to swimming microorganisms, Phys. Rev. E 92, 023023 (2015)PRESCM1539-375510.1103/PhysRevE.92.023023.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.148101DOI Listing

Publication Analysis

Top Keywords

time intervals
8
statistics colloidal
4
colloidal suspensions
4
suspensions stirred
4
stirred microswimmers
4
microswimmers statistical
4
statistical analysis
4
analysis experimental
4
experimental trajectories
4
trajectories colloids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!