Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report an electrochemical scanning tunneling microscopy (ECSTM) study of the 5,10,15,20-tetraphenyl-21 H,23 H-porphyrin cobalt(II) (CoTPP) catalyzed oxygen evolution reaction (OER). A highly ordered self-assembled monolayer of CoTPP is formed on the Au(111) electrode. Cyclic voltammetry results show the OER activity of the electrode is enhanced with the increasing alkalinity of the electrolytes. The CoTPP molecules appear as two symmetric bright spots in STM images in alkaline solution, which is in sharp contrast to that in acidic solution. The molecular contour changes are attributed to the formation of the CoTPP-OH species before OER, which is further confirmed by UV-vis absorption spectroscopy. In situ ECSTM results reveal the evolution from the CoTPP-OH species to CoTPP molecules during OER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b01229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!