A novel molecular ytterbium complex is reported with a new tetradentate ligand based on the 2,2'-bipyridine-6,6'-dicarboxylic acid scaffold. The photophysical properties are investigated, especially with respect to near-infrared luminescence. The ytterbium complex shows a rather high absolute luminescence quantum yield of Φ = 3.0% and a luminescence lifetime of τ = 72 μs at room temperature in CDOD solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b00548 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong Province 528200, P. R. China.
Charge generation layers (CGLs) play crucial roles in determining the electroluminescence (EL) performance of tandem organic light-emitting diodes (OLEDs). However, acquiring negligible voltage drops across the CGL unit and high-efficiency multiplications remains challenging. Here, we propose barrier-free strategies to compose a high-performance p-i-n type CGL intermediate by introducing a Yb/HI-9 modification at the heterojunction and a novel n-dopant, Yb:1,3-bis(9-phenyl-1,10-phenanthrolin-2-yl)benzene (mdPPhen), as the n-CGL.
View Article and Find Full Text PDFACS Nano
December 2024
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Drug repurposing refers to excavating clinically approved drugs for new clinical indications, effectively shortening the cost and time of clinical evaluation due to the established molecular structure, pharmacokinetics, and pharmacodynamics. In this sense, clinically approved Prussian blue (PB) has received considerable attention, by virtue of its unique optical, magnetic, and enzymatic performance. Nevertheless, the clinical transformation of PB-based nanodrugs remains restricted owing to their complex synthetic formulation and constrained therapeutic performance.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Lanthanide redox reactivity remains limited to one-electron transfer reactions due to their inability to access a broad range of oxidation states. Here, we show that multielectron reductive chemistry is achieved for ytterbium by using the tripodal tris(siloxide)arene redox-active ligand, which can store two electrons in the arene anchor. Reduction of the Yb(III) complex of the tris(siloxide)arene tripodal ligand affords the Yb(II) analogue by metal-centered reduction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France.
Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Rare-earth-doped all-inorganic perovskite applications for near-infrared (NIR) emission are crucial for the construction of the next generation of intelligent lighting sources. However, the preparation of rare-earth-doped all-inorganic perovskite is complex, and difficult to control, and the issue of thermal quenching poses significant challenges to its practical application. Here, in order to address these issues, a convenient photo-induced synthesis method for CsPbCl:Mn/Yb nanocrystals (NCs) is proposed by decomposing carbon tetrachloride with 365 nm light to provide chloride ions and regulate the formation of perovskite at room temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!