A glassy carbon electrode (GCE) was modified with a nanocomposite prepared from nitrogen-doped reduced graphene oxide (N-rGO) and single walled carbon nanotubes (SWCNTs), and then loaded with platinum nanoparticles (Pt NPs) to obtain a voltammetric sensor for daunorubicin (DNR). Reductive doping of GO and the crystallization of the Pt NPs were carried out in a one-step hydrothermal process. The modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry. It exhibited high sensitivity compared with unmodified electrode. Some experimental parameters which affected sensor response were optimized. Under optimum conditions and at a working voltage of typically -0.56 V (vs. Ag/AgCl), the sensor has a low detection limit (3 ng mL), a wide linear range (0.01-6 μg mL) and good long-term stability. The method was successfully applied to the sensitive and rapid determination of DNR in spiked human serum samples. Graphical abstract Platinum nanoparticles were loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes (N-rGO-SWCNTs-Pt) and then used for electrochemical determination of daunorubicin (DNR).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-019-3456-zDOI Listing

Publication Analysis

Top Keywords

platinum nanoparticles
12
nanocomposite prepared
12
reduced graphene
12
graphene oxide
12
carbon nanotubes
12
prepared nitrogen
8
nitrogen decorated
8
decorated reduced
8
oxide single-walled
8
single-walled carbon
8

Similar Publications

This work aims at the effects of anion-exchange membranes (AEMs) and ionomer binders on the catalyst electrodes for anion-exchange membrane fuel cells (AEMFCs). In the experiments, four metal catalysts (nano-grade Pt, PtRu, PdNi and Ag), four AEMs (aQAPS-S8, AT-1, X37-50T and X37-50RT) and two alkaline ionomers (aQAPS-S14 and XB-7) were used. They were verified through several technical parameters examination and cell performance comparison for the optimal selection of AMEs.

View Article and Find Full Text PDF

WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.

View Article and Find Full Text PDF

Platinum nanoparticles wrapped in carbon-dot-films as oxygen reduction reaction catalysts prepared by solution plasma sputtering.

Nanoscale Adv

December 2024

Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan

Fuel cells have become increasingly important in recent years because of their high energy efficiency and low environmental impact. However, key challenges remain in the widespread adoption of fuel-cell vehicles, including reducing Pt usage in catalysts and improving their durability. In this study, a high-performance Pt@carbon-dot-film core-shell catalyst was successfully synthesized using a nonequilibrium reaction field, , solution plasma (SP) process, by adjusting the electrolyte pH.

View Article and Find Full Text PDF

Osteosarcoma-Targeting Pt Prodrug Amphiphile for Enhanced Chemo-Immunotherapy via Ca trapping.

Acta Biomater

December 2024

Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China. Electronic address:

Platinum (Pt)-based anticancer agents exhibit a lack of selectivity in the treatment of osteosarcoma, resulting in significant toxicity. Furthermore, immune surveillance withinthe tumor microenvironment impedes the uptake of platinum drugs by osteosarcoma cells. To overcome these challenges, an oxaliplatin-based Pt prodrug amphiphile (Lipo-OXA-ALN) was designed and synthesized by incorporatingan osteosarcoma-targeting alendronate (ALN) alongside a lipid tail.

View Article and Find Full Text PDF

Direct Additive Detection in Polymer Films via Platinum-Assisted SALDI Mass Spectrometry Imaging.

Mass Spectrom (Tokyo)

December 2024

Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

In this study, we employed platinum-assisted surface-assisted laser desorption/ionization mass spectrometry imaging (MSI) (Pt-SALDI-MSI) to detect and visualize the spatial distribution of antioxidant additives and organic dyes in polystyrene films undergoing photodegradation. In traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), matrix-derived ion peaks often obscure signals from low-molecular-weight analytes. Pt-SALDI-MSI, which utilizes inorganic nanoparticles instead of an organic matrix, enables the interference-free analysis of low-molecular-weight compounds, thereby addressing the limitation of traditional MALDI-MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!