Efficacy of silver nanoparticles against the adults and eggs of monogenean parasites of fish.

Parasitol Res

Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa, Mexico.

Published: June 2019

Monogeneans are a diverse group of parasites that are commonly found on fish. Some monogenean species are highly pathogenic to cultured fish. The present study aimed to determine the in vitro anthelmintic effect of silver nanoparticles (AgNPs) against adults and eggs of monogeneans in freshwater using Cichlidogyrus spp. as a model organism. We tested two types of AgNPs with different synthesis methodologies and size diameters: ARGOVIT (35 nm) and UTSA (1-3 nm) nanoparticles. Damage to the parasite tegument was observed by scanning electron microscopy. UTSA AgNPs were more effective than ARGOVIT; in both cases, there was a concentration-dependent effect. A concentration of 36 μg/L UTSA AgNPs for 1 h was 100% effective against eggs and adult parasites, causing swelling, loss of corrugations, and disruption of the parasite's tegument. This is an interesting result considering that monogenean eggs are typically tolerant to antiparasite drugs and chemical agents. To the best of our knowledge, no previous reports have assessed the effect of AgNPs on any metazoan parasites of fish. Therefore, the present work provides a basis for future research on the control of fish parasite diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-019-06315-9DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
adults eggs
8
parasites fish
8
utsa agnps
8
fish
5
agnps
5
efficacy silver
4
nanoparticles adults
4
eggs
4
eggs monogenean
4

Similar Publications

To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.

View Article and Find Full Text PDF

This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.

View Article and Find Full Text PDF

In Situ Preparation of Silver Nanoparticles/Organophilic-Clay/Polyethylene Glycol Nanocomposites for the Reduction of Organic Pollutants.

Polymers (Basel)

December 2024

Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.

This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.

View Article and Find Full Text PDF

This study reports the development of highly conductive and stretchable fibrous membranes based on PVDF/PAN conjugate electrospinning with embedded silver nanoparticles (AgNPs) for wearable sensing applications. The fabrication process integrated conjugate electrospinning of PVDF/PAN, selective dissolution of polyvinylpyrrolidone (PVP) to create porous networks, and uniform AgNP incorporation via adsorption-reduction. Systematic optimization revealed that 10 wt.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!