Leather manufacturing involves conversion of raw skin and hides into leather (stable material) through series of mechanical and chemical operations. The leather industry has attracted public outcry due to severe environmental degradation, pollution and health and safety risks. Currently the industry faces serious sustainability challenge due to extensive use of toxic chemicals and generation of hazardous waste. This chapter describes the polluting chemicals consumed in different stages of conventional leather processing and the nature of waste generated. In order to overcome the hazards caused by toxic chemicals in tanneries and protect the environment, enzymes have been identified as a realistic alternate for chemicals used in beam house operation and waste management. Alkaline active proteases of alkaliphiles offer advantages over the use of conventional chemical catalysts for numerous reasons, for example, they exhibit high catalytic activity and high degree of substrate specificity, can be produced in large amounts and are economically viable. This is because the enzymes of these alkaliphiles are capable of catalysing reactions at the extremes of pH, temperature and salinity of leather-manufacturing processes.The chapter describes how alkaliphilic enzyme can effectively be used in soaking, dehairing, bating and degreasing operations to prevent waste generation, help in recovery of valuable by-products, reduce cost and increase leather quality. It is worth noting that protease has the capability to replace sodium sulphide in the dehairing process. In addition, alkaline proteases have shown remarkable ability in bioremediation of waste generated during the industrial processes. Intensive efforts are being directed towards chemical-based industries to use viable clean technology in their operation to reduce their negative impact on the environment. Similarly, leather industry should adopt the use of eco-friendly reagents such as enzymes to achieve long-term sustainability and clean environment and avert health hazards. Application of enzyme technology in clean leather processing strongly depends on legislation, political will and allocation of financial resources in research, development and implementation of this potentially powerful technology. Graphical Abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/10_2019_95 | DOI Listing |
RSC Adv
January 2025
Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 Zhejiang China
Waterproof fatliquoring agents can transform leather from a hydrophilic state to a hydrophobic state in the wet process of leather production. However, traditional waterproof fatliquoring agents may cause environmental pollution. Fluorocarbons in fluorinated fatliquoring agents are difficult to degrade, and polyacrylic acid fatliquoring agents require chromium powder fixation.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis (NIRT), Chennai 600 031, India.
Host-directed therapies (HDTs) resolve excessive inflammation during tuberculosis (TB) disease, which leads to irreversible lung tissue damage. The peptide-based nanostructures possess intrinsic anti-inflammatory and antioxidant properties among HDTs. Native carnosine, a natural dipeptide with superior self-organization and functionalities, was chosen for nanoformulation.
View Article and Find Full Text PDFAnn Anat
January 2025
Department of Morpho-Functional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania. Electronic address:
and Aims We conducted this research motivated by the incomplete knowledge of the changes made by resonance and harmonic filtering processes made by articulatory gestures in the supralar-yngeal level of the vocal tract. Aim of research The goal of the study is to evaluate the adaptive changes taking place at the oropharyngeal isthmus during sustained phonation. Methods We focused on exploring the dynamics of the oropharyngeal pavilion in voice professionals using Cone-Beam Computed Tomogra-phy (CBCT).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
Osteoporosis is a systemic metabolic disease that impairs bone remodeling by favoring osteoclastic resorption over osteoblastic formation. Nanotechnology-based therapeutic strategies focus on the delivery of drug molecules to either decrease bone resorption or increase bone formation rather than regulating the entire bone remodeling process, and osteoporosis interventions suffer from this limitation. Here, we present a multifunctional nanoparticle based on metal-phenolic networks (MPNs) for the treatment of systemic osteoporosis by regulating both osteoclasts and osteoblasts.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Textile Chemistry, Bandung Polytechnic of Textile Technology, Bandung, West Java, 40272, Indonesia.
Kombucha is a popular fermented beverage that involves fermentation using a symbiotic culture of bacteria and yeast (SCOBY) and produces bacterial cellulose (BC). Carbon and nitrogen sources are essential in kombucha processing and BC production. However, studies on cost-effective BC production as an alternative source of leather have remained scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!