A rapid and easy method that takes advantage of an inexpensive and portable fibre-based spectroscopic system (optrode) to determine the ratio of live to dead bacteria is proposed. Mixtures of live and dead Escherichia coli with proportions of live:dead cells varying from 0 to 100% were stained using SYTO 9 and propidium iodide (PI) and measured using the optrode. We demonstrated several approaches to obtaining the proportions of live:dead E. coli in a mixture of both live and dead, from analyses of the fluorescence spectra collected by the optrode. To find a suitable technique for predicting the percentage of live bacteria in a sample, four analysis methods were assessed and compared: SYTO 9:PI fluorescence intensity ratio, an adjusted fluorescence intensity ratio, single-spectrum support vector regression (SVR) and multi-spectra SVR. Of the four analysis methods, multi-spectra SVR obtained the most reliable results and was able to predict the percentage of live bacteria in 10 bacteria/mL samples between c. 7 and 100% live, and in 10 bacteria/mL samples between c. 7 and 73% live. By demonstrating the use of multi-spectra SVR and the optrode to monitor E. coli viability, we raise points of consideration for spectroscopic analysis of SYTO 9 and PI and aim to lay the foundation for future work that uses similar methods for different bacterial species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571086 | PMC |
http://dx.doi.org/10.1007/s00216-019-01848-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!