Fish shows great difference in growth rate between individuals during larval development and early growth. This difference seriously reduces the production efficiency in fish culture. Growth hormone (GH)/Insulin-like growth factor 1 (IGF1) system is said to play some pivotal roles in fish growth. In this study, we investigated differences of GH, IGF1 and GHR gene expressions in juvenile red spotted grouper () with different growth performance. Red spotted groupers were reared under the same environmental condition (water temperature 24±1℃, natural light) for 96 days after hatching. They were divided into 3 groups by size (fast growing, middle growing and slow growing groups: FGG, MGG, and SGG, respectively). RNA was extracted from the brain, liver and muscle tissues from each group, and target gene expression was examined by real-time PCR. In the brain with pituitary gland, expression of GH gene in FGG was significantly higher than the expression in SGG, but the expression of IGF1 and GHR genes in the muscle was highest in SGG. Difference of GHR and IGF1 mRNA in the liver between groups with different growth performance was less clear than that in other tissues, although level of IGF1 mRNA was higher in SGG than in MGG. These results suggest that hormonal governing of growth is not the same in fast growing and slow growing fish, and size grading could cause a shift of hormonal state and growth pattern in this species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487320PMC
http://dx.doi.org/10.12717/DR.2019.23.1.035DOI Listing

Publication Analysis

Top Keywords

red spotted
12
growth performance
12
growth
11
juvenile red
8
spotted grouper
8
grouper growth
8
size grading
8
igf1 ghr
8
fast growing
8
growing slow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!