AI Article Synopsis

  • Aerosol particles and their interactions with clouds create significant uncertainty in the climate system, affecting size, chemical makeup, and radiative properties.
  • During the early moments after cloud droplet formation, aerosols can generate a significant burst of hydroxyl radicals (OH), ranging from 0.1 to 3.5 micromolar, influenced by near-UV light.
  • This burst originates from previously unrecognized reactions between iron(II) and peracids, potentially increasing total OH levels in droplets significantly, by up to five times compared to known sources, thereby enhancing the effects of clouds on aerosol properties.

Article Abstract

Aerosol particles and their interactions with clouds are one of the most uncertain aspects of the climate system. Aerosol processing by clouds contributes to this uncertainty, altering size distributions, chemical composition, and radiative properties. Many changes are limited by the availability of hydroxyl radicals in the droplets. We suggest an unrecognized potentially substantial source of OH formation in cloud droplets. During the first few minutes following cloud droplet formation, the material in aerosols produces a near-UV light-dependent burst of hydroxyl radicals, resulting in concentrations of 0.1 to 3.5 micromolar aqueous OH ([OH]). The source of this burst is previously unrecognized chemistry between iron(II) and peracids. The contribution of the "OH burst" to total OH in droplets varies widely, but it ranges up to a factor of 5 larger than previously known sources. Thus, this new process will substantially enhance the impact of clouds on aerosol properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494489PMC
http://dx.doi.org/10.1126/sciadv.aav7689DOI Listing

Publication Analysis

Top Keywords

hydroxyl radicals
12
burst hydroxyl
8
cloud droplets
8
light-driven burst
4
radicals dominates
4
dominates oxidation
4
oxidation chemistry
4
chemistry newly
4
newly activated
4
activated cloud
4

Similar Publications

Key role of persistent free radicals in soil for persulfate activation: impacts on benzo[]pyrene degradation.

Environ Sci Process Impacts

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.

Environmentally persistent free radicals (EPFRs) have been widely detected in polycyclic aromatic hydrocarbon (PAH)-contaminated soils, but the activation of persulfate by inherent EPFRs in PAH-contaminated soil for the transformation of PAHs remains unclear. In the present study, benzo[]pyrene (B[]P) was selected as a representative PAH and its transformation in a persulfate/B[]P-contaminated soil system was studied without the addition of any other activator. Results indicated that EPFRs in the soil activated persulfate to produce reactive oxygen species (ROS) and degraded B[]P.

View Article and Find Full Text PDF

The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.

View Article and Find Full Text PDF

Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.

Eur J Inorg Chem

May 2024

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O or HO as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O to HO (oxidase) and HO to HO (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O and HO reduction.

View Article and Find Full Text PDF

Impact of gold nanoparticle size and coating on radiosensitization and generation of reactive oxygen species in cancer therapy.

Nanoscale Adv

January 2025

Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid Pl. de las Ciencias, 1, Moncloa-Aravaca Madrid Spain

Radiation therapy is a common cancer treatment but often damages surrounding healthy tissues, leading to unwanted side effects. Despite technological advancements aimed at improving targeting, minimizing exposure to normal cells remains a major challenge. High-Z nanoparticles, such as gold nanoparticles (AuNPs), are being explored as nano-radiosensitizers to enhance cancer treatment through physical, biological, and chemical mechanisms.

View Article and Find Full Text PDF

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!