Dysregulated free cholesterol (FC) metabolism has been implicated in nearly all stages of atherosclerosis, the underlying cause of most cardiovascular disease. According to a widely cited model, the burden of macrophage FC in the arterial wall is relieved by transhepatic reverse cholesterol transport (RCT), which comprises three successive steps: (1) macrophage FC efflux to high-density lipoprotein (HDL) and/or its major protein, apolipoprotein AI; (2) FC esterification by lecithin:cholesterol acyltransferase (LCAT); and (3) HDL-cholesteryl ester (CE) uptake via the hepatic HDL-receptor, scavenger receptor class B type 1 (SR-B1). Recent studies have challenged the validity of this model, most notably the role of LCAT, which appears to be of minor importance. In mice, most macrophage-derived FC is rapidly cleared from plasma (t < 5 min) without esterification by hepatic uptake; the remainder is taken up by multiple tissue and cell types, especially erythrocytes. Further, some FC is cleared by the nonhepatic transintestinal pathway. Lastly, FC movement among lipid surfaces is reversible, so that a higher-than-normal level of HDL-FC bioavailability-defined by high plasma HDL levels concurrent with a high mol% HDL-FC-leads to the transfer of excess FC to cells in vivo. SR-B1 mice provide an animal model to study the mechanistic consequences of high HDL-FC bioavailability that provokes atherosclerosis and other metabolic abnormalities. Future efforts should aim to reduce HDL-FC bioavailability, thereby reducing FC accretion by tissues and the attendant atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6489609PMC
http://dx.doi.org/10.14797/mdcj-15-1-47DOI Listing

Publication Analysis

Top Keywords

reverse cholesterol
8
cholesterol transport
8
high-density lipoprotein
8
free cholesterol
8
hdl-fc bioavailability
8
revisiting reverse
4
cholesterol
4
transport context
4
context high-density
4
lipoprotein free
4

Similar Publications

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Background: Cardiovascular (CV) risk factors are associated with increased dementia risk, but their effects on cognition in the oldest-old (90+) are not well studied. CV risk factors may appear to be protective against dementia due to reverse causation when they are measured during dementia process. To clarify this, we studied CV risk factors measured both at midlife and old age, with 48 years of follow-up.

View Article and Find Full Text PDF

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

Insulin resistance and diabetes are associated with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) conditions, which are distinguished by metabolic dysfunction, oxidative stress and inflammation. Sirtuin 1 (SIRT1), a NAD-dependent deacetylase, is fundamental in regulating metabolic pathways, reducing inflammation, and improving antioxidant defenses. This is the first study to investigate the effects of SRT1720, a SIRT1 activator, in diabetic rats on a high-fat diet.

View Article and Find Full Text PDF

Cholesterol Metabolism in CNS Diseases: The Potential of SREBP2 and LXR as Therapeutic Targets.

Mol Neurobiol

January 2025

Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.

The brain is the organ with the highest cholesterol content in the body. Cholesterol in the brain plays a crucial role in maintaining the integrity of synapses and myelin sheaths to ensure normal brain function. Disruptions in cholesterol metabolism are closely associated with various central nervous system (CNS) diseases, including Alzheimer's disease (AD), Huntington's disease (HD), and multiple sclerosis (MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!