Background: Hyperosmotic stress is an important pathophysiologic condition in diabetes, severe trauma, dehydration, infection, and ischemia. Furthermore, brain neuronal cells face hyperosmotic stress in ageing and Alzheimer's disease. Despite the enormous importance of knowing the homeostatic mechanisms underlying the responses of nerve cells to hyperosmotic stress, this topic has been underrepresented in the literature. Recent evidence points to autophagy induction as a hallmark of hyperosmotic stress, which has been proposed to be controlled by mTOR inhibition as a consequence of AMPK activation. We previously showed that methylglyoxal induced a decrease in the antioxidant proteins thioredoxin 1 (Trx1) and glyoxalase 2 (Glo2), which was mediated by AMPK-dependent autophagy. Thus, we hypothesized that hyperosmotic stress would have the same effect.
Methods: HT22 hippocampal nerve cells were treated with NaCl (37, 75, or 150 mM), and the activation of the AMPK/mTOR pathway was investigated, as well as the levels of Trx1 and Glo2. To determine if autophagy was involved, the inhibitors bafilomycin (Baf) and chloroquine (CQ), as well as ATG5 siRNA, were used. To test for AMPK involvement, AMPK-deficient mouse embryonic fibroblasts (MEFs) were used.
Results: Hyperosmotic stress induced a clear increase in autophagy, which was demonstrated by a decrease in p62 and an increase in LC3 lipidation. AMPK phosphorylation, linked to a decrease in mTOR and S6 ribosomal protein phosphorylation, was also observed. Deletion of AMPK in MEFs did not prevent autophagy induction by hyperosmotic stress, as detected by decreased p62 and increased LC3 II, or mTOR inhibition, inferred by decreased phosphorylation of P70 S6 kinase and S6 ribosomal protein. These data indicating that AMPK was not involved in autophagy activation by hyperosmotic stress were supported by a decrease in p-ULK1, an AMPK phosphorylation site. Trx1 and Glo2 levels were decreased at 6 and 18 h after treatment with 150 mM NaCl. However, this decrease in Trx1 and Glo2 in HT22 cells was not prevented by autophagy inhibition by Baf, CQ, or ATG5 siRNA. AMPK-deficient MEFs under hyperosmotic stress presented the same Trx1 and Glo2 decrease as wild-type cells.
Conclusion: Hyperosmotic stress induced AMPK activation, but this was not responsible for its effects on mTOR activity or autophagy induction. Moreover, the decrease in Trx1 and Glo2 induced by hyperosmotic stress was independent of both autophagy and AMPK activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458930 | PMC |
http://dx.doi.org/10.1155/2019/2715810 | DOI Listing |
Ocul Surf
January 2025
Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:
Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.
Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.
Pharmaceutics
January 2025
Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, SI, Italy.
(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFOcul Surf
January 2025
Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, 325000, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Zhejiang, 325000, China. Electronic address:
Unlabelled: The activation of the NLRP3 inflammasome by hyperosmotic stress is a critical pathophysiological response in dry eye disease (DED), driving the chronic cycle of inflammation on the ocular surface. The specific mechanism underlying hyperosmotic mechanical stimulation activates the NLRP3 inflammasome remains unclear. This study provides evidence that PIEZO1, a mechanosensitive ion channel, functions as the primary receptor for corneal epithelial cells in sensing mechanical stimulation induced by tear hyperosmolarity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China. Electronic address:
Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!