Photoacoustic imaging for guidance of interventions in cardiovascular medicine.

Phys Med Biol

Department of Cardiology, Biomedical Engineering, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.

Published: August 2019

Imaging guidance is paramount to procedural success in minimally invasive interventions. Catheter-based therapies are the standard of care in the treatment of many cardiac disorders, including coronary artery disease, structural heart disease and electrophysiological conditions. Many of these diseases are caused by, or effect, a change in vasculature or cardiac tissue composition, which can potentially be detected by photoacoustic imaging. This review summarizes the state of the art in photoacoustic imaging approaches that have been proposed for intervention guidance in cardiovascular care. All of these techniques are currently in the preclinical phase. We will conclude with an outlook towards clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab1edeDOI Listing

Publication Analysis

Top Keywords

photoacoustic imaging
12
imaging guidance
8
guidance interventions
4
interventions cardiovascular
4
cardiovascular medicine
4
medicine imaging
4
guidance paramount
4
paramount procedural
4
procedural success
4
success minimally
4

Similar Publications

Mn-doped MOF nanoparticles mitigating hypoxia via in-situ substitution strategy for dual-imaging guided combination treatment of microwave dynamic therapy and chemotherapy.

J Colloid Interface Sci

January 2025

The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:

Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.

View Article and Find Full Text PDF

Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT.

View Article and Find Full Text PDF

Quantification of Vascular Remodeling and Sinusoidal Capillarization to Assess Liver Fibrosis with Photoacoustic Imaging.

Radiology

January 2025

From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.).

Background Photoacoustic microscopy (PAM) can be used to detect strong absorption from endogenous and exogenous contrast material, making it promising for detailed structural and functional imaging of hepatic sinusoids, including dynamic visualization of permeability. Purpose To evaluate whether PAM-based quantitative parameters of liver function and integrity (lacunarity, blood oxygen saturation [Sao], and Evans blue [EB] permeability) are associated with histopathologic indexes of fibrosis in a mouse model. Materials and Methods Between October 2022 and July 2023, a total of 35 male C57BL/6 mice were included in this study and received intraperitoneal injection of carbon tetrachloride to establish mouse models of progressive liver fibrosis, with seven mice in each group.

View Article and Find Full Text PDF

From X- To J-Aggregation: Subtly Managing Intermolecular Interactions for Superior Phototheranostics with Precise 1064 nm Excitation.

Adv Healthc Mater

January 2025

College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China.

The stacking mode in aggregate state results from a delicate balance of supramolecular interactions, which closely affects the optoelectronic properties of organic π-conjugated systems. Then, managing these interactions is crucial for advancing phototheranostics, yet remains challenging. A subtle strategy involving peripheral phenyl groups is debuted herein to transform X-aggregated SQ-H into J-aggregated SQ-Ph, reorienting intermolecular dipole interactions while rationally modulating π-π interactions.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!