Membrane constriction and associated scission by proteins and nano structures are crucial to many processes in cellular and synthetic biology. We report mechanical constriction of vesicles by rings of adsorbed Janus nanoparticles that represent synthetic nano structures and mimic contractile proteins, and by aggregates of curved crescents that mimic scaffold proteins. Membrane energetics from Monte Carlo simulations and simulated annealing of the elastic membrane model confirms spontaneous vesicle constriction by aggregates of sufficiently-curved crescents of various lengths and by rings of Janus nanoparticles with a variety of ring lengths, particle sizes, and particle area fractions. We show that shorter rings of smaller particles with higher area fractions reinforce the constriction by increasing the energetic drive towards the constricted vesicle with smaller constriction radius. We demonstrate that vesicle constriction by crescent aggregates strongly depends on the crescent curvature. In contrast to aggregates of sufficiently-curved crescents that are capable of inducing full vesicle constriction, those of near flat crescents with negligible curvature leave the vesicle unconstricted. Our results offer promising perspectives for designing membrane-constricting nano structures such as nanoparticle aggregates and clusters of synthetic curved proteins such as DNA origami scaffolds with applications in synthetic biology. Our findings reveal the significant contribution of highly-curved F-BAR domains to cell division and explain how contractile protein rings such as dynamin GTPase, actomyosin rings, and endosomal sorting complexes required for transport constrict the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab1ed5 | DOI Listing |
Biophys J
January 2025
Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany. Electronic address:
Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
Harvard University T H Chan School of Public Health, Boston, Massachusetts, United States;
In asthma, tissue factor (TF) levels are elevated in the lung. In our previous studies using mechanically compressed human bronchial epithelial (HBE) cells, which are a well-defined in vitro model of bronchoconstriction during asthma exacerbations, we detected TF within extracellular vesicles (EVs) released from compressed HBE cells. Here, to better characterize the potential role of this mechanism in asthma, we tested the extent to which the transcriptional regulation of epithelial cell-derived TF varied between donors with and without asthma.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy.
Sewage sludge applications as soil amendment call for a proper ecological risk assessment due to unexpected delivery of toxic chemicals and materials. Standardized acute toxicity assays have proven to provide limited information in terms of potential hazard for soil organisms. Here, sublethal endpoints as physiological and tissue alterations were proposed as suitable tools for sewage sludge ecological risk assessment.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Dept. Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
Cell membranes in bacteria are laterally polarized to produce specific environments for membrane proteins, e.g., proteins involved in cell division which accumulate at mid-cell or the cell poles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!