Fibroblast growth factor 1 (FGF1) has been shown to reverse hyperglycemia in diabetic rodent models through peripheral and central administration routes. Previous studies demonstrated that insulin is required for central and peripheral FGF1 metabolic improvements; however, it is unknown if FGF1 targets insulin secretion at the islet level. Here we show for the first time that FGF1 increases islet insulin secretion in diabetic mouse models. FGF1 was administered via a single intracerebroventricular or multiple subcutaneous injections to leptin receptor-deficient (), diet-induced obese, and control mice; pancreatic islets were isolated 7 days later for analysis of insulin secretion. Central and peripheral FGF1 significantly lowered blood glucose in vivo and increased ex vivo islet insulin secretion from diabetic, but not control, mice. FGF1 injections to the cisterna magna mimicked intracerebroventricular outcomes, pointing to a novel therapeutic potential. Central effects of FGF1 appeared dependent on reductions in food intake, whereas peripheral FGF1 had acute actions on islet function prior to significant changes in food intake or blood glucose. Additionally, peripheral, but not central, FGF1 increased islet β-cell density, suggesting that peripheral FGF1 may induce long-term changes in islet structure and function that are not present with central treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609981 | PMC |
http://dx.doi.org/10.2337/db18-1175 | DOI Listing |
J Adv Res
January 2025
Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI 36310 Vigo, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21 39011 Santander, Spain. Electronic address:
Background: Flavonoids are naturally occurring dietary phytochemicals with significant antioxidant effects aside from several health benefits. People often consume them in combination with other food components. Compiling data establishes a link between bioactive flavonoids and prevention of several diseases in animal models, including cardiovascular diseases, diabetes, gut dysbiosis, and metabolic dysfunction-associated steatotic liver disease (MASLD).
View Article and Find Full Text PDFGenes Dev
December 2024
Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;
The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
Centro Universitário Faculdade de Medicina do ABC (FMABC), São Paulo, Santo André, Brazil.
Background: There is no strong evidence demonstrating whether or not aerobic exercise in conjunction with resistance exercise improves metabolic diabetes markers in postmenopausal women.
Objective: To evaluate the effect of aerobic exercise and resistance training on metabolic markers in postmenopausal women with type 2 diabetes mellitus (T2DM) by means of a systematic review and meta-analysis.
Methods: The searches were completed using EMBASE, MEDLINE/PubMed, Scopus and Web of Science databases.
Diabet Med
January 2025
School of Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, Scotland.
Type 2 diabetes (T2D) is a complex condition characterised by the interaction between insulin resistance and beta cell dysfunction. C-peptide, a key biomarker of endogenous insulin secretion, has a role in diagnosing type 1 diabetes (T1D). However, its utility in T2D has not been extensively studied.
View Article and Find Full Text PDFExpert Opin Drug Saf
January 2025
Department of Endocrinology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
Background: Fulminant type 1 diabetes mellitus (FT1DM) is a severe subtype of type 1 diabetes characterized by rapid onset, metabolic disturbances, and irreversible insulin secretion failure. Recent studies have suggested associations between FT1DM and certain medications, warranting further investigation.
Objectives: This study aims to analyze drugs associated with an increased risk of FT1DM using the Food and Drug Administration Adverse Event Reporting System (FAERS) database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!