Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Zeolitic imidazolate framework-8 (ZIF-8) has become one of the most typical examples of nanostructures for multi-enzyme immobilization due to its economical, mild and easy synthesis process. However, ZIF-8 nanocrystals are easily decomposed under acidic conditions. To solve this problem, the Fe-polydopamine (Fe-PDA) was bonded with ZIF-8 surface to form ZIF-8@Fe-PDA hybrid shell with good stability. Based on this, we developed glucose oxidase@ZIF-8@Fe-PDA (GOx@ZIF-8@Fe-PDA) integrated nanozymes (INAzymes) with cascade reactions via a mild and environmentally friendly method. In order to synthesize the INAzymes, GOx was first embedded in ZIF-8 by coprecipitation (GOx@ZIF-8), and then GOx@ZIF-8 was bonded with Fe-PDA, which acted as a peroxidase mimic. The ZIF-8@Fe-PDA hybrid shell protected the INAzymes nanostructure from degradation under acidic conditions, which results in good chemical stability of the GOx@ZIF-8@Fe-PDA. In the INAzymes system, glucose is converted to gluconic acid by GOx in the presence of oxygen to produce HO as an intermediate. The HO reacts rapidly with Fe-PDA to generate OH, which oxidizes 3,3',5,5'-tetramethylbenzidine (TMB). The UV absorbance of oxidized TMB is directly proportional to the glucose concentration, and has a good linear relationship in the range of 5.0-100.0 μM glucose with detection limit of 1.1 μM. The INAzymes system has been successfully applied to rapid colorimetric detection of blood glucose levels. The INAzymes system exhibits high catalytic activity, excellent sensitivity, and enhanced chemical stability, playing great promise in clinical diagnosis and biosensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.04.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!