Yeast are usually responsible for spoilage of soft drinks and fruit beverages, because of the particular characteristics of these products (low pH, high C/N ratio). The microbial stability is guaranteed by thermal treatments. However, excessive heat treatments can affect food sensorial quality. In this work the thermal resistance of different yeasts strains (seven belonging to the species Saccharomyces cerevisiae and six belonging to the species Kluyveromyces marxianus, Zygosaccharomyces bisporus, Z. mellis, Z. rouxii, Schizosaccharomyces pombe and Saccharomycodes ludwigii) was assessed in a model system. The results showed non-linear death curves and a high variability also within the same species. The most resistant strain, belonging to the species S. cerevisiae, was chosen for further experiments in orange juice based industrial beverages: first, death curves were performed; then, the probability of beverage spoilage in relation to process parameters (initial inoculum, temperature, treatment time) was evaluated using a logistic regression model. Finally, a cross-validation was performed to investigate the predictive capability of the fitted model. Pasteurization in the soft drink industry is commonly applied according to parameters defined several decades ago, which does not consider the successive findings concerning microbial physiology and stress response, the process improvement and the more recent tools provided by predictive microbiology. In this perspective, this study can fill a gap in the literature on this subject, going to be a basis for optimizing thermal processes. In fact, the data obtained indicated an interesting possibility for food industry to better modulated (and even reduce) thermal treatments, with the aim to guarantee microbial stability while reducing thermal damage and energy costs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2019.04.006 | DOI Listing |
Food Sci Nutr
December 2024
Paradise Scientific Company Ltd Dhaka Bangladesh.
The present research was aimed to isolate potential probiotic organisms from dairy products locally made in and around the Saurashtra region of Gujarat. A total of 224 colonies were screened for primary attributes. Based on the results, 70 isolates were carried further for secondary screening.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Synthetic intergeneric amphydiploids and genome-substituted wheat forms are an important source for transferring agronomically valuable genes from wild species into the common wheat (Triticum aestivum L.) genome. They can be used both in academic research and for breeding purposes as an original material for developing wheat-alien addition and substitution lines followed by translocation induction with the aid of irradiation or nonhomologous chromosome pairing.
View Article and Find Full Text PDFZygote
December 2024
Division of Aquatic Environmental Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India.
Rainbow trout () is a promising cultivable fish species with significant potential for expansion. As a cold-water fish belonging to the Salmonidae family, it requires an optimal temperature range of 10-15°C for optimal growth. This study explores a method for producing sterile rainbow trout with maximum survival rates by using heat shock treatment to enhance growth characteristics and improve aquaculture practices.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China.
is an important genus in the Apiosporaceae family with a worldwide distribution. They exhibit different lifestyles including pathogenic, saprophytic, and endophytic. In this study, we aimed to explore the associated with bamboo and collected 14 apiospora-like taxa from the forests of Yunnan Province, China.
View Article and Find Full Text PDFMicrosc Res Tech
December 2024
Department of Botany, Bharathiar University, Coimbatore, India.
Vincetoxicum capparidifolium (Wight & Arn.) Kuntze [=Tylophora capparidifolia (Wight & Arn.) Kuntze], belonging to the family Apocynaceae, is a medicinal plant species endemic to the southern Western Ghats, Tamil Nadu, India.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!