U(VI) sorption on Ca-bentonite at (hyper)alkaline conditions - Spectroscopic investigations of retention mechanisms.

Sci Total Environ

Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany. Electronic address:

Published: August 2019

Environmental conditions in deep geological repositories for radioactive waste may involve high pH values due to the degradation of concrete. However, the U(VI) sorption at such (hyper)alkaline conditions is still poorly understood. In this study, batch sorption experiments with Ca-bentonite in the pH range 8-13 at different carbonate concentrations were combined with spectroscopic investigations in order to gain insight into the underlying retention mechanisms. It was found that U(VI) sorption strongly correlates with the aqueous U(VI) speciation determined by time-resolved laser-induced luminescence spectroscopy (TRLFS). Increasing retention with increasing pH was accompanied by a change in aqueous speciation from uranyl carbonates to uranyl hydroxides. The occurrence of luminescence line-narrowing and a decreased frequency of the symmetric stretch vibration, deduced from site-selective TRLFS, indicate the presence of adsorbed U(VI) surface complexes. X-ray absorption fine structure (EXAFS) spectroscopy confirms that surface precipitation does not contribute significantly to the removal of U(VI) from solution but that retention occurs through the formation of two non-equivalent U(VI)-complexes on the bentonite surface. The present study demonstrates that in alkaline environments, where often only precipitation processes are considered, adsorption can provide effective retention of U(VI), despite the anionic character of prevailing aqueous species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.04.274DOI Listing

Publication Analysis

Top Keywords

uvi sorption
12
hyperalkaline conditions
8
spectroscopic investigations
8
retention mechanisms
8
uvi
7
retention
5
sorption ca-bentonite
4
ca-bentonite hyperalkaline
4
conditions spectroscopic
4
investigations retention
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!