The functional changes of the circadian system organization in aging.

Ageing Res Rev

Department of Anaesthesiology, School of Medicine, The University of Auckland, Park Road, Grafton, Auckland, 1023, New Zealand. Electronic address:

Published: July 2019

The circadian clock drives periodic oscillations at different levels of an organism from genes to behavior. This timing system is highly conserved across species from insects to mammals and human beings. The question of how the circadian clock is involved in the aging process continues to attract more attention. We aim to characterize the detrimental impact of aging on the circadian clock organization. We review studies on different components of the circadian clock at the central and periperal levels, and their changes in aged rodents and humans, and the fruit fly Drosophila. Intracellular signaling, cellular activity and intercellular coupling in the central pacemaker have been found to decline with advancing age. Evidence of degradation of the molecular clockwork reflected by clock gene expression in both central and peripheral oscillators due to aging is inadequate. The findings on age-associated molecular and functional changes of peripheral clocks are mixed. We conclude that aging can affect the circadian clock organization at various levels, and the impairment of the central network may be a fundamental mechanism of circadian disruption seen in aged species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arr.2019.04.006DOI Listing

Publication Analysis

Top Keywords

circadian clock
20
functional changes
8
aging circadian
8
clock organization
8
circadian
7
clock
6
aging
5
changes circadian
4
circadian system
4
system organization
4

Similar Publications

Evaluation of the Digital Ventilated Cage® system for circadian phenotyping.

Sci Rep

January 2025

Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.

The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber.

View Article and Find Full Text PDF

Evolutionary pressures adapted insect chemosensation to the respective insect's physiological needs and tasks in their ecological niches. Solitary nocturnal moths rely on their acute olfactory sense to find mates at night. Pheromones are detected with maximized sensitivity and high temporal resolution through mechanisms that are mostly unknown.

View Article and Find Full Text PDF

Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.

View Article and Find Full Text PDF

In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks.

View Article and Find Full Text PDF

Background: Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!