Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The expression of HS-1-associated protein X-1 (HAX-1) plays a major role in the development of hepatocellular carcinoma (HCC). However, the function of HAX-1 in HCC metastasis is unclear. Quantitative real-time PCR and western blotting were used to examine HAX-1 expression in HCC cell lines with different metastatic potential, and in tumor tissues with or without intrahepatic metastasis. HCC tissue arrays (n = 144) were used to assess correlations between clinicopathological parameters and HAX-1 expression. We also examined the effect of HAX-1 on promoting HCC cell metastasis in vivo and in vitro. The results showed that the expression levels of HAX-1 were higher in metastatic HCC cell lines than in non-metastatic HCC cell lines. HAX-1 was also significantly upregulated in primary HCC tissues with intrahepatic metastasis compared with those without intrahepatic metastasis. HCC in patients with high HAX-1 expression is more likely to metastasize. HAX-1 expression was associated with malignant progression and poor prognosis, and HAX1 silencing inhibited HCC cell migration and invasion in vitro and decreased HCC cell lung metastasis in vivo, whereas HAX-1 overexpression had the inverse effect. Moreover, HAX-1 increased HCC cell metastasis by promoting the epithelial-mesenchymal transition (EMT) process. Finally, we revealed that HAX-1 modulated EMT in HCC cells by increasing NF-κB/p65 nuclear translocation. In conclusion, HAX-1 promotes HCC metastasis by EMT through activating the NF-κB pathway, suggesting that HAX-1 could be a potential therapeutic target for HCC treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2019.04.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!