Excitatory effect of bradykinin on intrinsic neurons of the rat heart.

Neuropeptides

Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan; Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan. Electronic address:

Published: June 2019

The heart receives sympathetic and parasympathetic innervation through the intrinsic cardiac nervous system. Although bradykinin (BK) has negative inotropic and chronotropic properties of cardiac contraction, the direct effect of BK on the intrinsic neural network of the heart is still unclear. In the present study, the effect of BK on the intracardiac ganglion neurons isolated from rats was investigated using the perforated patch-clamp technique. Under current-clamp conditions, application of 0.1 μM BK depolarized the membrane, accompanied by repetitive firing of action potentials. When BK was applied repeatedly, the second responses were considerably less intense than the first application. The BK action was fully inhibited by the B receptor antagonist Hoe-140, but not by the B receptor antagonist des-Arg-[Leu]-BK. The BK response was mimicked by the B agonist [Hyp]-BK. The BK-induced depolarization was inhibited by the phospholipase C inhibitor U-73122. BK evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca markedly increased the BK-induced currents, suggesting an involvement of Ca-permeable non-selective cation channels. The muscarinic agonist oxotremorine-M (OxoM) also elicited the extracellular Ca-sensitive cationic currents. The OxoM response did not exhibit rundown with repeated agonist application. The amplitude of current evoked by 1 μM OxoM was comparable to that induced by 0.1 μM BK. Co-application of 0.1 μM BK and 1 μM OxoM elicited the current whose peak amplitude was almost the same as that elicited by OxoM alone, suggesting that BK and OxoM activate same cation channels. BK also reduced the amplitude of M-current, while the M-current inhibitor XE-991 affected neither resting membrane potential nor the BK-induced depolarization. From these results, we suggest that BK regulates excitability of intrinsic cardiac neurons by both an activation of non-selective cation channels and an inhibition of M-type K channels through B receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2019.04.002DOI Listing

Publication Analysis

Top Keywords

cation channels
12
intrinsic cardiac
8
receptor antagonist
8
bk-induced depolarization
8
non-selective cation
8
oxom elicited
8
1 μm oxom
8
oxom
6
excitatory bradykinin
4
intrinsic
4

Similar Publications

Structure- and Ligand-Based Virtual Screening for Identification of Novel TRPV4 Antagonists.

Molecules

December 2024

Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.

Transient receptor potential vanilloid (TRPV) 4 is involved in signaling pathways specifically mediating pain and inflammation, making it a promising target for the treatment of various painful and inflammatory conditions. However, only one drug candidate targeting TRPV4 has entered the clinical trials. To identify potential TRPV4 inhibitors for drug development, we screened a library of ion channel-modulating compounds using both structure- and ligand-based virtual screening approaches.

View Article and Find Full Text PDF

Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.

View Article and Find Full Text PDF

Protein dynamics underlies strong temperature dependence of heat receptors.

Proc Natl Acad Sci U S A

January 2025

Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.

Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.

View Article and Find Full Text PDF

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Background: Atopic dermatitis (AD) is a chronic, pruritic, and inflammatory dermatosis seen in individuals with an atopic predisposition. This study aimed to examine the immunoreactivity of spexin and TRPM2 in skin samples from patients with AD and MF lesions using immunohistochemical methods.

Materials And Methods: The study utilized a total of 60 skin samples, comprising 20 from AD patients, 20 from MF patients, and 20 from control subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!