This paper presents a two-stage cooperative path planner for multiple autonomous underwater vehicles operating in dynamic environment. In case of static environment, global Legendre pseudospectral method is employed for collision-free paths of vehicles for the purpose of minimum time consumption and simultaneous arrival. Moreover, in order to keep the multiple autonomous underwater vehicles safe from collisions on the path segments connecting two adjacent control nodes, an adaptive intermediate knots insertion algorithm is introduced. In the on-line planning stage, the local re-planning strategy aims at avoiding collisions with unexpected dynamic obstacles by two consecutive avoidance maneuvers, and the differential flatness property of autonomous underwater vehicle is utilized, which can help the vehicles react fast enough to avoid moving obstacles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2019.04.012DOI Listing

Publication Analysis

Top Keywords

autonomous underwater
16
multiple autonomous
12
underwater vehicles
12
cooperative path
8
vehicles operating
8
operating dynamic
8
vehicles
5
path planning
4
planning multiple
4
autonomous
4

Similar Publications

Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.

View Article and Find Full Text PDF

This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.

View Article and Find Full Text PDF

Wake Detection and Positioning for Autonomous Underwater Vehicles Based on Cilium-Inspired Wake Sensor.

Sensors (Basel)

December 2024

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

This paper proposes a method for passive detection of autonomous underwater vehicle (AUV) wakes using a cilium-inspired wake sensor (CIWS), which can be used for the detection and tracking of AUVs. First, the characteristics of the CIWS and its working principle for detecting underwater flow fields are introduced. Then, a flow velocity sensor is used to measure the flow velocities of the "TS MINI" AUV's wake at different positions, and a velocity field model of the "TS MINI" AUV's wake is established.

View Article and Find Full Text PDF

This work proposes a fuel cell power supply system for underwater applications (e.g., autonomous underwater vehicles), where artificial gills, based on a polymer membrane, harvest the required oxygen from the ambient water.

View Article and Find Full Text PDF

Dynamic Boundary Estimation of Suspended Sediment Plume Benefit by the Autonomous Underwater Vehicle Sensing.

Sensors (Basel)

December 2024

Key Laboratory of System Control and Information Processing, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China.

The suspended sediment plume generated in the deep-sea mining process significantly impacts the marine environment and seabed ecosystem. Accurate boundary estimation can effectively monitor the scope of environmental impact, guiding mining operations to prevent ecological damage. In this paper, we propose a dynamic boundary estimation approach for the suspended sediment plume, leveraging the sensing capability of the Autonomous Underwater Vehicles (AUVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!