Background: Human Endogenous Retroviruses type K HML-2 (HK2) are integrated into 117 or more areas of human chromosomal arms while two newly discovered HK2 proviruses, K111 and K222, spread extensively in pericentromeric regions, are the first retroviruses discovered in these areas of our genome.
Methods: We use PCR and sequencing analysis to characterize pericentromeric K111 proviruses in DNA from individuals of diverse ethnicities and patients with different diseases.
Results: We found that the 5' LTR-gag region of K111 proviruses is missing in certain individuals, creating pericentromeric instability. K111 deletion (-/- K111) is seen in about 15% of Caucasian, Asian, and Middle Eastern populations; it is missing in 2.36% of African individuals, suggesting that the -/- K111 genotype originated out of Africa. As we identified the -/-K111 genotype in Cutaneous T-cell lymphoma (CTCL) cell lines, we studied whether the -/-K111 genotype is associated with CTCL. We found a significant increase in the frequency of detection of the -/-K111 genotype in Caucasian patients with severe CTCL and/or Sézary syndrome (n = 35, 37.14%), compared to healthy controls (n = 160, 15.6%) [p = 0.011]. The -/-K111 genotype was also found to vary in HIV-1 infection. Although Caucasian healthy individuals have a similar frequency of detection of the -/- K111 genotype, Caucasian HIV Long-Term Non-Progressors (LTNPs) and/or elite controllers, have significantly higher detection of the -/-K111 genotype (30.55%; n = 36) than patients who rapidly progress to AIDS (8.5%; n = 47) [p = 0.0097].
Conclusion: Our data indicate that pericentromeric instability is associated with more severe CTCL and/or Sézary syndrome in Caucasians, and appears to allow T-cells to survive lysis by HIV infection. These findings also provide new understanding of human evolution, as the -/-K111 genotype appears to have arisen out of Africa and is distributed unevenly throughout the world, possibly affecting the severity of HIV in different geographic areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498702 | PMC |
http://dx.doi.org/10.1186/s12920-019-0505-8 | DOI Listing |
BMC Med Genomics
May 2019
Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
J Virol
April 2019
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
Human papillomavirus (HPV) E2 proteins are integral for the transcription of viral genes and the replication and maintenance of viral genomes in host cells. E2 recruits the viral DNA helicase E1 to the origin. A lysine (K111), highly conserved among almost all papillomavirus (PV) E2 proteins, is a target for P300 (EP300) acetylation and is critical for viral DNA replication (E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!