The study examined the preparation, characterization and the use of carbon xerogel (CX) material for the adsorption of three model naphthenic acids (NAs); such as, heptanoic acid (HPA), 5-cyclohexanepentanoic acid (CHPA), and 5-phenylvaleric acid (PVA). CX was synthesized by sol-gel method from resorcinol and formaldehyde. The characterization results showed that CX was a mesoporous material with large surface area (573 m/g) and high pore volume (1.55 cm/g), which was mainly composed of carbon (93.20%) and oxygen (6.71%). Adsorption studies revealed that PVA, the NA having an aromatic ring was adsorbed more easily by CX (87 mg/g) due to - interactions, followed by HPA (65 mg/g) and CHPA (61 mg/g). In addition, by studying the effect of solution pH, the result confirmed that repulsion greatly hindered the adsorption of HPA onto CX at pHs above that of the pH and at lower pHs attractive electrostatic forces promoted adsorption. Adsorption kinetics fitted the pseudo-first-order model, which suggested that physisorption was most likely the means of adsorption. For the intraparticle diffusion model, the rate of film diffusion was higher than the rate of pore diffusion for each model compound regardless of their structure. Accordingly, this confirmed that pore diffusion was the rate-limiting step, although film diffusion still maintained a significant role in the rate of diffusion. In general, CX exhibited excellent adsorption performance due to its highly mesoporous character so it could be used as a passive treatment method in tailing ponds for removal of organic matters.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2019.1615130DOI Listing

Publication Analysis

Top Keywords

carbon xerogel
8
xerogel material
8
adsorption
8
material adsorption
8
model naphthenic
8
naphthenic acids
8
diffusion model
8
film diffusion
8
pore diffusion
8
diffusion
6

Similar Publications

Multimodal electrospray thruster for small spacecraft: design and experimental characterization.

J Elect Propuls

July 2024

RMC Advanced Propulsion and Plasma Exploration Laboratory (RAPPEL), Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, 13 General Crerar Crescent, Kingston, K7K 7B4 Ontario Canada.

Electrospray thrusters are a promising electric micropropulsion technology which could be used to meet the propulsion needs of nanosatellites, or for fine attitude control of larger spacecraft. Multimodal propulsion is the integration of two or more propulsion modes into a system which utilizes a common propellant. Indeed, spacecraft mission simulations and models have shown that this type of multimode propulsion capacity is exciting because of the flexibility and adaptability it provides mission designers and planners.

View Article and Find Full Text PDF

Synthesis of porous carbon xerogel adsorbents with tailored hierarchical porosity and morphology for the selective removal of sulfamethoxazole from water.

Environ Sci Pollut Res Int

December 2024

Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain.

Article Synopsis
  • Pellet-type carbon xerogel adsorbents (CXCs) were created using a sol-gel process with resorcinol, formaldehyde, and CsCO as a catalyst, aimed at removing the pollutant sulfamethoxazole (SMX) from water.
  • The different R/Cs ratios used (100, 500, 1000, 2000) produced CXCs with varying porous structures; notably, CXCs100 had the highest adsorption capacity of 87.8 mg/g, but this capacity decreased with higher R/Cs ratios due to reduced pore volume.
  • CXCs500 was identified as the most efficient adsorbent with a good balance of adsorption capacity (72.0 mg/g)
View Article and Find Full Text PDF

Beyond batch experiments: unveiling the potential of bimetallic carbon xerogels for catalytic wet peroxide oxidation of hospital wastewater in continuous mode.

Environ Sci Pollut Res Int

December 2024

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253-253, Bragança, Portugal.

Article Synopsis
  • Researchers developed single- and bimetallic carbon xerogels by adding iron and iron-cobalt precursors, testing them in catalytic wet peroxide oxidation (CWPO) to degrade ibuprofen in a simulated environment.
  • The bimetallic catalyst showed significantly better performance—25% higher than the single metal and 85% higher than non-metallic catalysts—after 360 minutes of reaction at a mild temperature of 30°C.
  • Further optimization for treating hospital wastewater indicated the bimetallic carbon xerogel could achieve up to 80% chemical oxygen demand (COD) removal and 55% total organic carbon (TOC) mineralization in continuous operation, suggesting its potential for efficient wastewater treatment beyond traditional batch methods
View Article and Find Full Text PDF

The application of a synthesized carbon xerogel (RFX) for the adsorptive removal from water of ciprofloxacin (CPX), a widely used fluoroquinolones-group antibiotic for humans and animals, has been reported in this work. The carbon xerogel was characterized by N adsorption-desorption isotherms, FTIR, Raman spectroscopy, TPD studies, elemental analysis, determination of isoelectric point (pH) and scanning electron microscopy (SEM). CPX adsorption experiments were conducted in batch mode, using results obtained with F400 commercial activated carbon for comparison purposes.

View Article and Find Full Text PDF

Numerous applications of nanoporous materials require their pores to be filled with liquids. In spite of its huge technological importance, the conditions for the wetting of nanometer-sized pores and its phenomenology are still poorly understood. We report on capillary rise experiments with water in carbon xerogels, with synchrotron small-angle scattering used to follow the process in situ at the nanometer scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!