Aging is a complex process emerging from integrated physiological networks. Recent work using principal component analysis (PCA) of multisystem biomarkers proposed a novel fundamental physiological process, "integrated albunemia," which was consistent across human populations and more strongly associated with age and mortality risk than individual biomarkers. Here we tested for integrated albunemia and associations with age and mortality across six diverse nonhuman primate species and humans. PCA of 13 physiological biomarkers recovered in all species a primary axis of variation (PC1) resembling integrated albunemia, which increased with age in all but one species but was less predictive of mortality risk. Within species, PC1 scores were often reliably recovered with a minimal biomarker subset and usually stable between sexes. Even among species, correlations in PC1 structure were often strong, but the effect of phylogeny was inconclusive. Thus, integrated albunemia likely reflects an evolutionarily conserved process across primates and appears to be generally associated with aging but not necessarily with negative impacts on survival. Integrated albunemia is unlikely to be the only conserved emergent physiological process; our findings hence have implications both for the evolution of the aging process and of physiological networks more generally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777080 | PMC |
http://dx.doi.org/10.1093/gerona/glz110 | DOI Listing |
Aging (Albany NY)
February 2022
Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, Moscow 129226, Russian Federation.
Old age is a crucial risk factor for severe coronavirus disease 2019 (COVID-19), with serious or fatal outcomes disproportionately affecting older adults compared with the rest of the population. We proposed that the physiological health status and biological age, beyond the chronological age itself, could be the driving trends affecting COVID-19 severity and mortality. A total of 155 participants hospitalized with confirmed COVID-19 aged 26-94 years were recruited for the study.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
October 2019
Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, Canada.
Aging is a complex process emerging from integrated physiological networks. Recent work using principal component analysis (PCA) of multisystem biomarkers proposed a novel fundamental physiological process, "integrated albunemia," which was consistent across human populations and more strongly associated with age and mortality risk than individual biomarkers. Here we tested for integrated albunemia and associations with age and mortality across six diverse nonhuman primate species and humans.
View Article and Find Full Text PDFPLoS One
November 2015
Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, Maryland 21225, United States of America.
Many studies of aging examine biomarkers one at a time, but complex systems theory and network theory suggest that interpretations of individual markers may be context-dependent. Here, we attempted to detect underlying processes governing the levels of many biomarkers simultaneously by applying principal components analysis to 43 common clinical biomarkers measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents (Women's Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on Aging). The first axis was associated with anemia, inflammation, and low levels of calcium and albumin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!