Circulating cell death biomarker TRAIL is associated with increased organ dysfunction in sepsis.

JCI Insight

Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.

Published: May 2019

AI Article Synopsis

  • The study investigates how levels of TRAIL, a protein that induces programmed cell death, are linked to outcomes like in-hospital mortality and organ dysfunction in sepsis patients.
  • It was found that lower TRAIL levels correlate with increased organ dysfunction and higher incidence of septic shock across multiple patient groups.
  • Additionally, lower TRAIL levels were inversely associated with RIPK3, a protein involved in another form of cell death called necroptosis, indicating a complex relationship between these pathways in critically ill patients.

Article Abstract

Background: In sepsis, there may be dysregulation in programed cell death pathways, typified by apoptosis and necroptosis. Programmed cell death pathways may contribute to variability in the immune response. TRAIL is a potent inducer of apoptosis. Receptor-interacting serine/threonine protein kinase-3 (RIPK3) is integral to the execution of necroptosis. We explored whether plasma TRAIL levels were associated with in-hospital mortality, organ dysfunction, and septic shock. We also explored the relationship between TRAIL and RIPK3.

Methods: We performed an observational study of critically ill adults admitted to intensive care units at 3 academic medical centers across 2 continents, using 1 as derivation and the other 2 as validation cohorts. Levels of TRAIL were measured in the plasma of 570 subjects by ELISA.

Results: In all cohorts, lower (<28.5 pg/ml) versus higher levels of TRAIL were associated with increased organ dysfunction (P ≤ 0.002) and septic shock (P ≤ 0.004). Lower TRAIL levels were associated with in-hospital mortality in 2 of 3 cohorts (Weill Cornell-Biobank of Critical Illness, P = 0.012; Brigham and Women's Hospital Registry of Critical Illness, P = 0.011; Asan Medical Center, P = 0.369). Lower TRAIL was also associated with increased RIPK3 (P ≤ 0.001).

Conclusion: Lower levels of TRAIL were associated with septic shock and organ dysfunction in 3 independent ICU cohorts. TRAIL was inversely associated with RIPK3 in all cohorts.

Funding: NIH (R01-HL055330 and KL2-TR002385).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538332PMC
http://dx.doi.org/10.1172/jci.insight.127143DOI Listing

Publication Analysis

Top Keywords

cell death
12
organ dysfunction
8
death pathways
8
trail
5
circulating cell
4
death biomarker
4
biomarker trail
4
trail associated
4
associated increased
4
increased organ
4

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Donor C1 Group KIR-ligand inferiority is linked to increased mortality in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide.

Cytotherapy

December 2024

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.

Background Aims: In HLA-identical hematopoietic stem cell transplantation (HSCT), HLA-C1 group killer cell immunoglobulin-like receptor (KIR) ligands have been linked to graft-versus-host disease, whereas C2 homozygosity was associated with increased relapses. The differential impact of the recipients versus the donor's HLA-C KIR ligands cannot be determined in HLA-identical HSCT but may be elucidated in the haploidentical setting, in which HLA-C (including the HLA-C KIR ligand group) mismatching is frequently present.

Methods: We retrospectively investigated the effect of recipient versus donor C1 ligand content on survival and complications in post-transplant cyclophosphamide (PTCy)-based haploidentical HSCT (n = 170).

View Article and Find Full Text PDF

Identification of fatty acid anabolism patterns to predict prognosis and immunotherapy response in gastric cancer.

Discov Oncol

January 2025

Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

Gastric cancer (GC), one of the most common and heterogeneous malignancies, is the second leading cause of cancer death worldwide and is closely related to dietary habits. Fatty acid is one of the main nutrients of human beings, which is closely related to diabetes, hypertension and other diseases. However, the correlation between fatty acid metabolism and the development and progression of GC remains largely unknown.

View Article and Find Full Text PDF

Background: Early neurological deterioration (END) is associated with a poor prognosis in acute ischemic stroke (AIS). Effectively lowering low-density lipoprotein cholesterol (LDL-C) can improve the stability of atherosclerotic plaque and reduce post-stroke inflammation, which may be an effective means to lower the incidence of END. The objective of this study was to determine the preventive effects of evolocumab on END in patients with non-cardiogenic AIS.

View Article and Find Full Text PDF

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!