Predicting subcellular localization of multisite proteins using differently weighted multi-label k-nearest neighbors sets.

Technol Health Care

Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, Qinghai, China.

Published: January 2020

Background: For a protein to execute its function, ensuring its correct subcellular localization is essential. In addition to biological experiments, bioinformatics is widely used to predict and determine the subcellular localization of proteins. However, single-feature extraction methods cannot effectively handle the huge amount of data and multisite localization of proteins. Thus, we developed a pseudo amino acid composition (PseAAC) method and an entropy density technique to extract feature fusion information from subcellular multisite proteins.

Objective: Predicting multiplex protein subcellular localization and achieve high prediction accuracy.

Method: To improve the efficiency of predicting multiplex protein subcellular localization, we used the multi-label k-nearest neighbors algorithm and assigned different weights to various attributes. The method was evaluated using several performance metrics with a dataset consisting of protein sequences with single-site and multisite subcellular localizations.

Results: Evaluation experiments showed that the proposed method significantly improves the optimal overall accuracy rate of multiplex protein subcellular localization.

Conclusion: This method can help to more comprehensively predict protein subcellular localization toward better understanding protein function, thereby bridging the gap between theory and application toward improved identification and monitoring of drug targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598103PMC
http://dx.doi.org/10.3233/THC-199018DOI Listing

Publication Analysis

Top Keywords

subcellular localization
24
protein subcellular
16
multiplex protein
12
multi-label k-nearest
8
k-nearest neighbors
8
subcellular
8
localization proteins
8
predicting multiplex
8
localization
7
protein
7

Similar Publications

Mouse-derived Synaptosomes Trypsin Cleavage Assay to Characterize Synaptic Protein Sub-localization.

Bio Protoc

January 2025

Department of Structural Interactomics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.

Neurons communicate through neurotransmission at highly specialized junctions called synapses. Each neuron forms numerous synaptic connections, consisting of presynaptic and postsynaptic terminals. Upon the arrival of an action potential, neurotransmitters are released from the presynaptic site and diffuse across the synaptic cleft to bind specialized receptors at the postsynaptic terminal.

View Article and Find Full Text PDF

Uptake, Subcellular Distribution, and Metabolism of Decabromodiphenyl Ethane in Vegetables under Different Exposure Scenarios.

Environ Sci Technol

January 2025

Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC, Zhejiang University, Hangzhou 310058, China.

Decabromodiphenyl ethane (DBDPE), a key alternative to deca-BDE (BDE-209), has been ubiquitous in the receiving ecosystem. However, little is known about its uptake process and fate in plants. Here, the plant absorption, distribution, and metabolism of C-DBDPE under two distinct exposure pathways (i.

View Article and Find Full Text PDF

Plasma membrane-associated ARAF condensates fuel RAS-related cancer drug resistance.

Nat Chem Biol

January 2025

Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.

RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited.

View Article and Find Full Text PDF

Antibody ligation of HLA class II induces YAP nuclear localization and formation of cytoplasmic YAP condensates in human endothelial cells.

Immunohorizons

January 2025

Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.

Antibody (Ab) crosslinking of HLA class II (HLA II) molecules on the surface of endothelial cells (ECs) triggers proliferative and prosurvival intracellular signaling, which are implicated in promoting chronic Ab-mediated rejection (cAMR). Despite the importance of cAMR in transplant medicine, the mechanisms involved remain incompletely understood. Here, we examined the regulation of yes-associated protein (YAP) nuclear cytoplasmic localization and phosphorylation in human ECs challenged with Abs that bind HLA II, which are strongly associated with cAMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!