Macrocyclic Control in Helix Mimetics.

Chem Rev

Department of Chemistry , The College of New Jersey, Ewing , New Jersey 08628 , United States.

Published: September 2019

The α-helix is the most commonly found natural secondary structure in proteins and is intrinsic to many protein-protein interactions involved in important biological functions. Novel peptides designed to mimic helices found in nature employ a variety of methods to control their structure. These approaches are significant due to potential applications in developing new therapeutic agents and materials. Over the years, many strategies have emerged to influence, initiate, and propagate helical content in short, synthetic peptides. Early innovations used the natural macrocycle tether of disulfide bond formation, metal-mediated or lactam group addition as a means to prompt helical formation. These examples have been applied to a host of peptides as inhibitors toward relevant diseases including cancer, viral and bacterial infection. In the most recent decades, hydrocarbon bridges to "staple" peptides across side chains or hydrogen bond surrogates in the backbone of peptides have been effective in producing biologically functional, helical peptidomimetics with non-natural elements, increased protease resistance and potency in vitro and in vivo. Modern methods expand and elaborate these, with applications of functional peptides from both synthetic and recombinant origins. Overall, efforts persist using these strategies to create peptides with great biological potential and a better understanding of the control of helical structure in protein folding.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.8b00623DOI Listing

Publication Analysis

Top Keywords

peptides
7
macrocyclic control
4
control helix
4
helix mimetics
4
mimetics α-helix
4
α-helix commonly
4
commonly natural
4
natural secondary
4
secondary structure
4
structure proteins
4

Similar Publications

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Background: The gonadotropin-releasing hormone antagonist (GnRH-ant) protocol is associated with few oocytes retrieved, few mature oocytes and poor endometrial receptivity. Omission of GnRH-ants on trigger day seems unlikely to induce preovulation and may improve outcomes in the GnRH-ant protocol. This study aimed to systematically evaluate the effects of GnRH-ant cessation on trigger day on in vitro fertilisation outcomes following the GnRH-ant protocol.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Cervical cancer is the second most common cancer in Indonesia, where traditional herbal treatments like <i>Zanthoxylum acanthopodium</i> (andaliman) are culturally used. Investigating protein biomarkers such as E7, pRb, EGFR and p16 can help assess the efficacy of these treatments. <b>Materials and Methods:</b> There were 5 groups in this study: 2 control groups (C- and C+) and 3 treatment groups (each receiving one of three doses).

View Article and Find Full Text PDF

Annual Banned-Substance Review 17th Edition-Analytical Approaches in Human Sports Drug Testing 2023/2024.

Drug Test Anal

December 2024

Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.

The 17th edition of the annual banned-substance review on analytical approaches in human sports drug testing is dedicated to literature published between October 2023 and September 2024. As in previous years, focus is put particularly on new or enhanced analytical options in human doping controls as well as investigations into the metabolism and elimination of compounds of interest, which represent central (while not exclusive) cornerstones of the global anti-doping mission. New information published within the past 12 months on established doping agents as well as new potentially relevant substances are reviewed and discussed in the context of the World Anti-Doping Agency's 2024 Prohibited List.

View Article and Find Full Text PDF

Objective: To evaluate the effectiveness of complex rehabilitation measures using the drug Cortexin in children with neuropsychiatric pathology during a one-year follow-up.

Material And Methods: A promising dynamic examination and treatment of 323 children with neuropsychiatric pathology from the age of 7 days to 1 year, age 3.2±1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!